文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review.

作者信息

Saba Luca, Maindarkar Mahesh, Johri Amer M, Mantella Laura, Laird John R, Khanna Narendra N, Paraskevas Kosmas I, Ruzsa Zoltan, Kalra Manudeep K, Fernandes Jose Fernandes E, Chaturvedi Seemant, Nicolaides Andrew, Rathore Vijay, Singh Narpinder, Isenovic Esma R, Viswanathan Vijay, Fouda Mostafa M, Suri Jasjit S

机构信息

Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy.

School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India.

出版信息

Rev Cardiovasc Med. 2024 May 22;25(5):184. doi: 10.31083/j.rcm2505184. eCollection 2024 May.


DOI:10.31083/j.rcm2505184
PMID:39076491
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11267214/
Abstract

Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease's progression. Despite clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of CVD risk. This review proposes two hypotheses: (i) RBBM and GBBM biomarkers have a strong correlation and can be used to detect the severity of CVD and stroke precisely, and (ii) introduces a proposed artificial intelligence (AI)-based preventive, precision, and personalized ( ) CVD/Stroke risk model. The PRISMA search selected 246 studies for the CVD/Stroke risk. It showed that using the RBBM and GBBM biomarkers, deep learning (DL) modelscould be used for CVD/Stroke risk stratification in the framework. Furthermore, we present a concise overview of platelet function, complete blood count (CBC), and diagnostic methods. As part of the AI paradigm, we discuss explainability, pruning, bias, and benchmarking against previous studies and their potential impacts. The review proposes the integration of RBBM and GBBM, an innovative solution streamlined in the DL paradigm for predicting CVD/Stroke risk in the framework. The combination of RBBM and GBBM introduces a powerful CVD/Stroke risk assessment paradigm. model signifies a promising advancement in CVD/Stroke risk assessment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/5f71b90c5cdd/2153-8174-25-5-184-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/6b6c57bee444/2153-8174-25-5-184-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/2cd4ea77eca2/2153-8174-25-5-184-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/48d9b0fac3ec/2153-8174-25-5-184-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/ca84ce54c322/2153-8174-25-5-184-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/cb3720e6dd48/2153-8174-25-5-184-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/e3ecd9fe4025/2153-8174-25-5-184-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/5f71b90c5cdd/2153-8174-25-5-184-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/6b6c57bee444/2153-8174-25-5-184-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/2cd4ea77eca2/2153-8174-25-5-184-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/48d9b0fac3ec/2153-8174-25-5-184-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/ca84ce54c322/2153-8174-25-5-184-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/cb3720e6dd48/2153-8174-25-5-184-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/e3ecd9fe4025/2153-8174-25-5-184-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f3a/11267214/5f71b90c5cdd/2153-8174-25-5-184-g7.jpg

相似文献

[1]
UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review.

Rev Cardiovasc Med. 2024-5-22

[2]
Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review.

Rheumatol Int. 2023-11

[3]
A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool.

Front Biosci (Landmark Ed). 2023-10-19

[4]
Cardiovascular disease/stroke risk stratification in deep learning framework: a review.

Cardiovasc Diagn Ther. 2023-6-30

[5]
Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review.

Metabolites. 2022-3-31

[6]
Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review.

Diagnostics (Basel). 2022-6-24

[7]
Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study.

J Clin Med. 2022-11-19

[8]
Cardiovascular/Stroke Risk Assessment in Patients with Erectile Dysfunction-A Role of Carotid Wall Arterial Imaging and Plaque Tissue Characterization Using Artificial Intelligence Paradigm: A Narrative Review.

Diagnostics (Basel). 2022-5-17

[9]
Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review.

EClinicalMedicine. 2024-5-27

[10]
Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: A narrative review of integrated approaches using carotid ultrasound.

Comput Biol Med. 2020-11

引用本文的文献

[1]
Impact of Carotid Artery Geometry and Clinical Risk Factors on Carotid Atherosclerotic Plaque Prevalence.

J Pers Med. 2025-4-12

[2]
Leveraging Machine Learning for Pediatric Appendicitis Diagnosis: A Retrospective Study Integrating Clinical, Laboratory, and Imaging Data.

Health Sci Rep. 2025-4-21

[3]
Transformer and Attention-Based Architectures for Segmentation of Coronary Arterial Walls in Intravascular Ultrasound: A Narrative Review.

Diagnostics (Basel). 2025-3-26

[4]
Special Issue: "New Trends in Diabetes, Hypertension, and Cardiovascular Diseases-2nd Edition".

Int J Mol Sci. 2025-1-7

[5]
An Artificial Intelligence-Based Non-Invasive Approach for Cardiovascular Disease Risk Stratification in Obstructive Sleep Apnea Patients: A Narrative Review.

Rev Cardiovasc Med. 2024-12-28

[6]
Computational Biology in the Discovery of Biomarkers in the Diagnosis, Treatment and Management of Cardiovascular Diseases.

Cardiol Cardiovasc Med. 2024

本文引用的文献

[1]
The relationship between Choroidal Vascular Index and non-invasive ultrasonographic atherosclerosis predictors.

Photodiagnosis Photodyn Ther. 2024-4

[2]
Carotid Plaque-RADS: A Novel Stroke Risk Classification System.

JACC Cardiovasc Imaging. 2024-2

[3]
Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look.

J Cardiovasc Dev Dis. 2023-12-4

[4]
Association of carotid atherosclerotic plaque and intima-media thickness with the monocyte to high-density lipoprotein cholesterol ratio among low-income residents of rural China: a population-based cross-sectional study.

BMC Public Health. 2023-12-19

[5]
Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review.

J Korean Med Sci. 2023-11-27

[6]
A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool.

Front Biosci (Landmark Ed). 2023-10-19

[7]
Epicardial adipose tissue, metabolic disorders, and cardiovascular diseases: recent advances classified by research methodologies.

MedComm (2020). 2023-10-24

[8]
Carotid Plaque-RADS: A Novel Stroke Risk Classification System.

JACC Cardiovasc Imaging. 2024-1

[9]
Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review.

Rheumatol Int. 2023-11

[10]
Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population.

Life (Basel). 2023-7-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索