Unit of Environmental Engineering, Institute of Infrastructure, University of Innsbruck, 6020 Innsbruck, Austria.
Department of Civil Engineering, Institute for Urban Water Management, Technical University Kaiserslautern, 67663 Kaiserslautern, Germany.
Water Res. 2022 Aug 15;222:118910. doi: 10.1016/j.watres.2022.118910. Epub 2022 Aug 2.
Recent research underpinned the effectiveness of topological decentralization for urban stormwater networks (USNs) during the planning stage in terms of both capital savings and resilience enhancement. However, how centralized and decentralized USNs' structures with various degrees of redundancy (i.e., redundant water flow pathways) project resilience under functional and structural failure remains an unresolved issue. In this work, we present a systemic and generic framework to investigate the impact of adding redundant flow paths on resilience based on three strategies for optimal centralized versus decentralized USNs. Furthermore, a tailored graph-theory based measure (i.e., eigenvector centrality) is proposed to introduce redundant paths to the critical locations of USNs. The proposed framework is then applied to a real large-scale case study. The results confirm the critical role of layout decentralization under both functional (e.g., extreme precipitation events), and structural failure (e.g., pipe collapse). Moreover, the findings indicate that the implementation of redundant paths could increase resilience performance by up to 8% under functional failure without changing the network's major structural characteristics (i.e., sewer diameters, lengths, and storage capacity), only by leveraging the effective flow redistribution. The scheme proposed in this study can be a fruitful initiative for further improving the USNs' resilience during both planning and rehabilitation stages.
最近的研究支持了拓扑去中心化在城市雨水管网 (USN) 规划阶段的有效性,无论是在节省资本还是提高弹性方面。然而,在功能和结构失效的情况下,具有不同冗余程度(即冗余水流路径)的集中式和分散式 USN 结构如何表现出弹性,这仍然是一个未解决的问题。在这项工作中,我们提出了一个系统和通用的框架,基于三种最优集中式与分散式 USN 的策略,研究了添加冗余流路径对弹性的影响。此外,还提出了一种基于图论的定制措施(即特征向量中心性),将冗余路径引入 USN 的关键位置。然后将该框架应用于一个真实的大规模案例研究。结果证实了布局去中心化在功能失效(例如极端降水事件)和结构失效(例如管道坍塌)下的关键作用。此外,研究结果表明,在不改变管网主要结构特征(即下水道直径、长度和储水能力)的情况下,仅通过有效流量再分配,实施冗余路径可以将弹性性能提高多达 8%,而在功能失效下。本研究提出的方案可以为进一步提高 USN 在规划和修复阶段的弹性提供有益的举措。