Suppr超能文献

IMSE:基于相互作用信息、注意力和分子结构的药物-药物相互作用提取。

IMSE: interaction information attention and molecular structure based drug drug interaction extraction.

机构信息

Wuhan University of Technology, GongDa Road, Wuhan, China.

Intelligent Bioinformatics Laboratory, Wuhan University of Technology, GongDa Road, Wuhan, China.

出版信息

BMC Bioinformatics. 2022 Aug 14;23(Suppl 7):338. doi: 10.1186/s12859-022-04876-8.

Abstract

BACKGROUND

Extraction of drug drug interactions from biomedical literature and other textual data is an important component to monitor drug-safety and this has attracted attention of many researchers in healthcare. Existing works are more pivoted around relation extraction using bidirectional long short-term memory networks (BiLSTM) and BERT model which does not attain the best feature representations.

RESULTS

Our proposed DDI (drug drug interaction) prediction model provides multiple advantages: (1) The newly proposed attention vector is added to better deal with the problem of overlapping relations, (2) The molecular structure information of drugs is integrated into the model to better express the functional group structure of drugs, (3) We also added text features that combined the T-distribution and chi-square distribution to make the model more focused on drug entities and (4) it achieves similar or better prediction performance (F-scores up to 85.16%) compared to state-of-the-art DDI models when tested on benchmark datasets.

CONCLUSIONS

Our model that leverages state of the art transformer architecture in conjunction with multiple features can bolster the performances of drug drug interation tasks in the biomedical domain. In particular, we believe our research would be helpful in identification of potential adverse drug reactions.

摘要

背景

从生物医学文献和其他文本数据中提取药物-药物相互作用是监测药物安全性的一个重要组成部分,这引起了医疗保健领域许多研究人员的关注。现有的工作更多地集中在使用双向长短期记忆网络(BiLSTM)和 BERT 模型的关系提取上,而这些模型无法获得最佳的特征表示。

结果

我们提出的 DDI(药物-药物相互作用)预测模型具有多个优点:(1)新提出的注意力向量可用于更好地处理重叠关系问题,(2)将药物的分子结构信息集成到模型中,以更好地表达药物的官能团结构,(3)我们还添加了结合 t 分布和卡方分布的文本特征,使模型更专注于药物实体,(4)在基准数据集上进行测试时,与最先进的 DDI 模型相比,它实现了类似或更好的预测性能(F 分数高达 85.16%)。

结论

我们的模型利用了最先进的转换器架构和多种特征,可以提高生物医学领域的药物相互作用任务的性能。特别是,我们相信我们的研究将有助于识别潜在的药物不良反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e76/9375903/5047c3284aad/12859_2022_4876_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验