Suppr超能文献

用于前列腺超声图像分割的结构边界保留U型网络

Structure boundary-preserving U-Net for prostate ultrasound image segmentation.

作者信息

Bi Hui, Sun Jiawei, Jiang Yibo, Ni Xinye, Shu Huazhong

机构信息

Department of Radiation Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China.

出版信息

Front Oncol. 2022 Jul 28;12:900340. doi: 10.3389/fonc.2022.900340. eCollection 2022.

Abstract

Prostate cancer diagnosis is performed under ultrasound-guided puncture for pathological cell extraction. However, determining accurate prostate location remains a challenge from two aspects: (1) prostate boundary in ultrasound images is always ambiguous; (2) the delineation of radiologists always occupies multiple pixels, leading to many disturbing points around the actual contour. We proposed a boundary structure-preserving U-Net (BSP U-Net) in this paper to achieve precise prostate contour. BSP U-Net incorporates prostate shape prior to traditional U-Net. The prior shape is built by the key point selection module, which is an active shape model-based method. Then, the module plugs into the traditional U-Net structure network to achieve prostate segmentation. The experiments were conducted on two datasets: and our private prostate ultrasound dataset. The results on achieved a Dice similarity coefficient (DSC) of 95.94% and a Jaccard coefficient (JC) of 88.58%. The results of prostate contour based on our method achieved a higher pixel accuracy of 97.05%, a mean intersection over union of 93.65%, a DSC of 92.54%, and a JC of 93.16%. The experimental results show that the proposed BSP U-Net has good performance on and prostate ultrasound image segmentation and outperforms other state-of-the-art methods.

摘要

前列腺癌诊断是在超声引导下进行穿刺以提取病理细胞。然而,从两个方面确定准确的前列腺位置仍然是一个挑战:(1)超声图像中的前列腺边界总是模糊不清;(2)放射科医生的勾勒总是占据多个像素,导致实际轮廓周围有许多干扰点。我们在本文中提出了一种边界结构保留U-Net(BSP U-Net)以实现精确的前列腺轮廓。BSP U-Net在传统U-Net的基础上融入了前列腺形状先验。先验形状由关键点选择模块构建,这是一种基于主动形状模型的方法。然后,该模块插入传统U-Net结构网络以实现前列腺分割。实验在两个数据集上进行:[此处原文缺失数据集名称]和我们的私人前列腺超声数据集。在[此处原文缺失数据集名称]上的结果实现了95.94%的骰子相似系数(DSC)和88.58%的杰卡德系数(JC)。基于我们方法的前列腺轮廓结果实现了更高的像素准确率97.05%、平均交并比93.65%、DSC为92.54%以及JC为93.16%。实验结果表明,所提出的BSP U-Net在[此处原文缺失数据集名称]和前列腺超声图像分割方面具有良好性能,并且优于其他现有最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a88/9366193/8543f7f2497d/fonc-12-900340-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验