Suppr超能文献

Psi-Net:用于医学图像分割的形状和边界感知联合多任务深度网络。

Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation.

作者信息

Murugesan Balamurali, Sarveswaran Kaushik, Shankaranarayana Sharath M, Ram Keerthi, Joseph Jayaraj, Sivaprakasam Mohanasankar

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:7223-7226. doi: 10.1109/EMBC.2019.8857339.

Abstract

Image segmentation is a primary task in many medical applications. Recently, many deep networks derived from U-Net has been extensively used in various medical image segmentation tasks. However, in most of the cases, networks similar to U-net produce coarse and non-smooth segmentations with lots of discontinuities. To improve and refine the performance of U-Net like networks, we propose the use of parallel decoders which along with performing the mask predictions also perform contour prediction and distance map estimation. The contour and distance map aid in ensuring smoothness in the segmentation predictions. To facilitate joint training of three tasks, we propose a novel architecture called Psi-Net with a single encoder and three parallel decoders (thus having a shape of Ψ), one decoder to learn the segmentation mask prediction and other two decoders to learn the auxiliary tasks of contour detection and distance map estimation. The learning of these auxiliary tasks helps in capturing the shape and the boundary information. We also propose a new joint loss function for the proposed architecture. The loss function consists of a weighted combination of Negative Log Likelihood and Mean Square Error loss. We have used two publicly available datasets: 1) Origa dataset for the task of optic cup and disc segmentation and 2) Endovis segment dataset for the task of polyp segmentation to evaluate our model. We have conducted extensive experiments using our network to show our model gives better results in terms of segmentation, boundary and shape metrics.

摘要

图像分割是许多医学应用中的一项主要任务。最近,许多源自U-Net的深度网络已被广泛应用于各种医学图像分割任务中。然而,在大多数情况下,类似于U-Net的网络会产生粗糙且不光滑的分割结果,存在大量不连续之处。为了改进和优化类似U-Net网络的性能,我们提出使用并行解码器,其除了执行掩码预测外,还执行轮廓预测和距离图估计。轮廓和距离图有助于确保分割预测的平滑性。为了便于对这三个任务进行联合训练,我们提出了一种名为Psi-Net的新颖架构,它具有一个编码器和三个并行解码器(因此形状为Ψ),一个解码器用于学习分割掩码预测,另外两个解码器用于学习轮廓检测和距离图估计的辅助任务。这些辅助任务的学习有助于捕捉形状和边界信息。我们还为所提出的架构提出了一种新的联合损失函数。该损失函数由负对数似然和均方误差损失的加权组合组成。我们使用了两个公开可用的数据集:1)用于视杯和视盘分割任务的Origa数据集,以及2)用于息肉分割任务的Endovis分割数据集来评估我们的模型。我们使用我们的网络进行了广泛的实验,以表明我们的模型在分割、边界和形状指标方面给出了更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验