Suppr超能文献

基于多级全卷积网络的皮肤镜图像分割

Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.

作者信息

Bi Lei, Kim Jinman, Ahn Euijoon, Kumar Ashnil, Fulham Michael, Feng Dagan

出版信息

IEEE Trans Biomed Eng. 2017 Sep;64(9):2065-2074. doi: 10.1109/TBME.2017.2712771. Epub 2017 Jun 7.

Abstract

OBJECTIVE

Segmentation of skin lesions is an important step in the automated computer aided diagnosis of melanoma. However, existing segmentation methods have a tendency to over- or under-segment the lesions and perform poorly when the lesions have fuzzy boundaries, low contrast with the background, inhomogeneous textures, or contain artifacts. Furthermore, the performance of these methods are heavily reliant on the appropriate tuning of a large number of parameters as well as the use of effective preprocessing techniques, such as illumination correction and hair removal.

METHODS

We propose to leverage fully convolutional networks (FCNs) to automatically segment the skin lesions. FCNs are a neural network architecture that achieves object detection by hierarchically combining low-level appearance information with high-level semantic information. We address the issue of FCN producing coarse segmentation boundaries for challenging skin lesions (e.g., those with fuzzy boundaries and/or low difference in the textures between the foreground and the background) through a multistage segmentation approach in which multiple FCNs learn complementary visual characteristics of different skin lesions; early stage FCNs learn coarse appearance and localization information while late-stage FCNs learn the subtle characteristics of the lesion boundaries. We also introduce a new parallel integration method to combine the complementary information derived from individual segmentation stages to achieve a final segmentation result that has accurate localization and well-defined lesion boundaries, even for the most challenging skin lesions.

RESULTS

We achieved an average Dice coefficient of 91.18% on the ISBI 2016 Skin Lesion Challenge dataset and 90.66% on the PH2 dataset.

CONCLUSION AND SIGNIFICANCE

Our extensive experimental results on two well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation.

摘要

目的

皮肤病变分割是黑色素瘤自动计算机辅助诊断中的重要一步。然而,现有的分割方法往往会对病变进行过度分割或分割不足,并且当病变边界模糊、与背景对比度低、纹理不均匀或包含伪影时,表现不佳。此外,这些方法的性能严重依赖于大量参数的适当调整以及有效预处理技术的使用,如光照校正和毛发去除。

方法

我们建议利用全卷积网络(FCN)自动分割皮肤病变。FCN是一种神经网络架构,通过将低级外观信息与高级语义信息分层组合来实现目标检测。我们通过一种多阶段分割方法解决FCN对具有挑战性的皮肤病变(例如,那些边界模糊和/或前景与背景之间纹理差异小的病变)产生粗糙分割边界的问题,其中多个FCN学习不同皮肤病变的互补视觉特征;早期FCN学习粗略的外观和定位信息,而后期FCN学习病变边界的细微特征。我们还引入了一种新的并行集成方法,将各个分割阶段获得的互补信息组合起来,以获得最终的分割结果,即使对于最具挑战性的皮肤病变,该结果也具有准确的定位和清晰的病变边界。

结果

我们在ISBI 2016皮肤病变挑战数据集上的平均Dice系数为91.18%,在PH2数据集上为90.66%。

结论与意义

我们在两个成熟的公共基准数据集上进行的广泛实验结果表明,我们的方法在皮肤病变分割方面比其他现有最先进的方法更有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验