Yangtze University Health Science Center, Jingzhou 434020, China.
Contrast Media Mol Imaging. 2022 Jul 31;2022:5369104. doi: 10.1155/2022/5369104. eCollection 2022.
Follicular lymphoma (FL) is the second most prevalent form of non-Hodgkin lymphoma (NHL) and accounts for almost 20% of all NHL cases. Although FL patients' overall survival rates have steadily increased, there is still no accepted standard of care for individuals who experience recurrence or resistance to treatment. Hence, it is needed to evaluate the precise molecular cascades underlying FL to develop efficient diagnostic and treatment approaches. Herein, we aimed to evaluate variations in gene expression profiles, explore the underlying mechanisms, and find new FL targets. In the present study, Gene Expression Omnibus (GEO) database was employed to evaluate microarray datasets including GSE32018 and GSE55267. software was employed to evaluate differentially expressed genes (DEGs) between FL and noncancer samples. The DEGs were evaluated using GO, KEGG pathway enrichment analysis, and PPI network to evaluate hub genes, which were then, examined using gene function enrichment analysis. According to the obtained results, a total of 190 upregulated and 162 downregulated DEGs were evaluated. Following the generation of PPI networks, 15 hub genes in highly connected upregulated DEGs were selected including FN1, MMP9, CCL2, CD8A, POSTN, CCR5, COL3A1, CXCL12, VCAM1, COL1A2, CCL5, SPARC, TIMP1, CXCL9, and IL18. The GO enrichment evaluation of the underlined hub genes indicated that the immunological response was the most considerably enriched term. Twelve significant cascades were found using the KEGG pathway analysis, most of which were linked to cellular structure and immunity. Our findings suggested that FN1, SPARC, POSTN, MMP9, and VCAM1 genes are potential biomarkers of FL, and cellular immunity contributes to the pathogenesis of FL. Moreover, the unique DEGs and cascades found in the present study may present new perspectives on the molecular basis of FL's underlying mechanisms as well as a new understanding of FL's future precise management.
滤泡性淋巴瘤(FL)是第二常见的非霍奇金淋巴瘤(NHL),占所有 NHL 病例的近 20%。尽管 FL 患者的总生存率稳步提高,但对于那些经历复发或对治疗产生耐药的患者,仍然没有被广泛接受的治疗标准。因此,需要评估 FL 背后的确切分子级联反应,以开发有效的诊断和治疗方法。在此,我们旨在评估基因表达谱的变化,探索潜在的机制,并寻找新的 FL 靶点。在本研究中,我们使用基因表达综合数据库(GEO)来评估包括 GSE32018 和 GSE55267 在内的微阵列数据集。使用 R 软件来评估 FL 和非癌样本之间的差异表达基因(DEGs)。使用 GO、KEGG 通路富集分析和 PPI 网络来评估 DEGs,然后使用基因功能富集分析来评估 hub 基因。根据获得的结果,评估了总共 190 个上调和 162 个下调的 DEGs。在生成 PPI 网络之后,从高连接的上调 DEGs 中选择了 15 个 hub 基因,包括 FN1、MMP9、CCL2、CD8A、POSTN、CCR5、COL3A1、CXCL12、VCAM1、COL1A2、CCL5、SPARC、TIMP1、CXCL9 和 IL18。对这些关键基因的 GO 富集评估表明,免疫反应是最显著的富集项。通过 KEGG 通路分析发现了 12 个重要的信号通路,其中大多数与细胞结构和免疫有关。我们的研究结果表明,FN1、SPARC、POSTN、MMP9 和 VCAM1 基因可能是 FL 的潜在生物标志物,细胞免疫有助于 FL 的发病机制。此外,本研究中发现的独特的 DEGs 和信号通路可能为 FL 潜在机制的分子基础提供新的视角,并对 FL 的未来精准管理有新的认识。
Contrast Media Mol Imaging. 2022
World J Surg Oncol. 2018-6-19
J Gastrointest Oncol. 2021-10
Biochem Genet. 2024-5-27
Virchows Arch. 2021-5
Int J Mol Sci. 2020-9-24
Onco Targets Ther. 2020-8-24
J Cell Physiol. 2021-3