Chellasamy Selvaa Kumar, Watson Eleanor
School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Sector-15, CBD Belapur, Navi Mumbai 400614, India.
School of Computing & Engineering, University of Gloucestershire, United Kingdom.
J King Saud Univ Sci. 2022 Oct;34(7):102277. doi: 10.1016/j.jksus.2022.102277. Epub 2022 Aug 10.
Human ezrin protein interacts with SARS-CoV S endodomain and restricts virus fusion, entry, and early events of infection. In general, their binding strength and their structural stability determines their successful entry into the host cells. However, the binding affinity of these two endodomains with the ezrin protein has been elusive due to a paucity of knowledge on the 3D structure. This study modelled the endodomains of both SARS-CoV-1 and SARS-CoV-2 and then docked these models with human ezrin protein. This study establishes that the modelled endodomains of both SARS-CoV-1 and SARS-Cov-2 consisted of three disulphide bridges for self-stabilization. Protein-protein docking listed four salt bridges with a higher buried surface area between ezrin-SARS-CoV-1 endodomain compared to that of ezrin-SARS-CoV-2 with six salt bridges with lower buried surface area. Molecular simulation of the ezrin-SARS-CoV-1 endodomain showed better structural stability with lower Root Mean Square Deviation score compared to that of ezrin-SARS-CoV-2 endodomain due to the substitution of alanine with cysteine residue. Protein-ligand docking studies confirmed better ezrin-drug interaction for quercetin, minocycline, calcifediol, calcitriol, selamectin, ivermectin and ergocalciferol. However, protein-ligand simulation confirmed strong drug-protein interaction during simulation for all the above-listed drugs except for ergocalciferol which could not establish its interaction with the protein during simulation. Strong drug binding within the active site pocket therefore restricts the interaction of viral endodomain and simultaneously stabilizes the ezrin protein. Furthermore, the higher stability between the ezrin after their interaction with the drug moiety could restrict the virus fusion and the infection. This study provides a basis for further development of these drug molecules to clinical trials aiming to identify potential drug molecules which can treat COVID-19 infection.
人埃兹蛋白与严重急性呼吸综合征冠状病毒(SARS-CoV)S 结构域相互作用,限制病毒融合、进入及早期感染事件。一般来说,它们的结合强度和结构稳定性决定了其成功进入宿主细胞。然而,由于对三维结构的了解不足,这两个 S 结构域与埃兹蛋白的结合亲和力一直难以捉摸。本研究对 SARS-CoV-1 和 SARS-CoV-2 的 S 结构域进行建模,然后将这些模型与人类埃兹蛋白对接。本研究证实,SARS-CoV-1 和 SARS-CoV-2 的建模 S 结构域均由三个二硫键实现自我稳定。蛋白质-蛋白质对接显示,埃兹蛋白与 SARS-CoV-1 S 结构域之间有四个盐桥,其埋藏表面积较高;而埃兹蛋白与 SARS-CoV-2 之间有六个盐桥,其埋藏表面积较低。埃兹蛋白与 SARS-CoV-1 S 结构域的分子模拟显示,与埃兹蛋白-SARS-CoV-2 S 结构域相比,其具有更好的结构稳定性,均方根偏差得分更低,这是由于丙氨酸被半胱氨酸残基取代所致。蛋白质-配体对接研究证实,槲皮素、米诺环素、骨化二醇、骨化三醇、塞拉菌素、伊维菌素和麦角钙化醇与埃兹蛋白的药物相互作用更好。然而,蛋白质-配体模拟证实,除麦角钙化醇在模拟过程中无法与蛋白质建立相互作用外,上述所有药物在模拟过程中均有强烈的药物-蛋白质相互作用。因此,活性位点口袋内的强药物结合限制了病毒 S 结构域的相互作用,同时稳定了埃兹蛋白。此外,埃兹蛋白与药物部分相互作用后更高的稳定性可能会限制病毒融合和感染。本研究为这些药物分子进一步开展临床试验提供了基础,旨在确定可治疗 COVID-19 感染的潜在药物分子。