Suppr超能文献

SQEIR:一种流行病病毒传播分析与预测模型。

SQEIR: An epidemic virus spread analysis and prediction model.

作者信息

Wu Yichun, Sun Yaqi, Lin Mugang

机构信息

College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421002, China.

Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang, 421002, China.

出版信息

Comput Electr Eng. 2022 Sep;102:108230. doi: 10.1016/j.compeleceng.2022.108230. Epub 2022 Aug 10.

Abstract

In 2019, a new strain of coronavirus pneumonia spread quickly worldwide. Viral propagation may be simulated using the Susceptible Infectious Removed (SIR) model. However, the SIR model fails to consider that separation of patients in the COVID-19 incubation stage entails difficulty and that these patients have high transmission potential. The model also ignores the positive effect of quarantine measures on the spread of the epidemic. To address the two flaws in the SIR model, this study proposes a new infectious disease model referred to as the Susceptible Quarantined Exposed Infective Removed (SQEIR) model. The proposed model uses the weighted least squares for the optimal estimation of important parameters in the infectious disease model. Based on these parameters, new differential equations were developed to describe the spread of the epidemic. The experimental results show that this model exhibits an accuracy 6.7% higher than that of traditional infectious disease models.

摘要

2019年,一种新型冠状病毒肺炎在全球迅速传播。可以使用易感-感染-康复(SIR)模型来模拟病毒传播。然而,SIR模型没有考虑到新冠病毒潜伏期患者的隔离存在困难,且这些患者具有较高的传播潜力。该模型还忽视了隔离措施对疫情传播的积极作用。为解决SIR模型中的这两个缺陷,本研究提出了一种新的传染病模型,即易感-隔离-暴露-感染-康复(SQEIR)模型。所提出的模型使用加权最小二乘法对传染病模型中的重要参数进行最优估计。基于这些参数,建立了新的微分方程来描述疫情的传播。实验结果表明,该模型的准确率比传统传染病模型高6.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d37/9364756/a1770527edeb/ga1_lrg.jpg

相似文献

1
SQEIR: An epidemic virus spread analysis and prediction model.
Comput Electr Eng. 2022 Sep;102:108230. doi: 10.1016/j.compeleceng.2022.108230. Epub 2022 Aug 10.
3
Coronavirus disease 2019 epidemic prediction in Shanghai under the "dynamic zero-COVID policy" using time-dependent SEAIQR model.
J Biosaf Biosecur. 2022 Dec;4(2):105-113. doi: 10.1016/j.jobb.2022.06.002. Epub 2022 Jun 20.
4
Revisiting classical SIR modelling in light of the COVID-19 pandemic.
Infect Dis Model. 2023 Mar;8(1):72-83. doi: 10.1016/j.idm.2022.12.002. Epub 2022 Dec 16.
5
Compartmental Models of the COVID-19 Pandemic for Physicians and Physician-Scientists.
SN Compr Clin Med. 2020;2(7):852-858. doi: 10.1007/s42399-020-00330-z. Epub 2020 Jun 4.
6
Impacts of reopening strategies for COVID-19 epidemic: a modeling study in Piedmont region.
BMC Infect Dis. 2020 Oct 28;20(1):798. doi: 10.1186/s12879-020-05490-w.
7
A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak.
Appl Intell (Dordr). 2021;51(7):4162-4198. doi: 10.1007/s10489-020-01938-3. Epub 2021 Jan 1.
8
Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
Comput Biol Med. 2020 Oct;125:104011. doi: 10.1016/j.compbiomed.2020.104011. Epub 2020 Sep 25.
10
An evaluation of COVID-19 transmission control in Wenzhou using a modified SEIR model.
Epidemiol Infect. 2021 Jan 8;149:e2. doi: 10.1017/S0950268820003064.

引用本文的文献

1
Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile.
Math Biosci Eng. 2025 May 27;22(7):1680-1721. doi: 10.3934/mbe.2025062.
2
Understanding underlying physical mechanism reveals early warning indicators and key elements for adaptive infections disease networks.
PNAS Nexus. 2024 Jun 26;3(7):pgae237. doi: 10.1093/pnasnexus/pgae237. eCollection 2024 Jul.

本文引用的文献

3
A Review of Multi-Compartment Infectious Disease Models.
Int Stat Rev. 2020 Aug;88(2):462-513. doi: 10.1111/insr.12402. Epub 2020 Aug 3.
4
A Model for the Spread of Infectious Diseases in a Region.
Int J Environ Res Public Health. 2020 Apr 30;17(9):3119. doi: 10.3390/ijerph17093119.
7
Approximate Bayesian Computation for infectious disease modelling.
Epidemics. 2019 Dec;29:100368. doi: 10.1016/j.epidem.2019.100368. Epub 2019 Sep 25.
8
Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response.
Front Immunol. 2019 Mar 28;10:549. doi: 10.3389/fimmu.2019.00549. eCollection 2019.
9
On the predictability of infectious disease outbreaks.
Nat Commun. 2019 Feb 22;10(1):898. doi: 10.1038/s41467-019-08616-0.
10
Artificial Intelligence for infectious disease Big Data Analytics.
Infect Dis Health. 2019 Feb;24(1):44-48. doi: 10.1016/j.idh.2018.10.002. Epub 2018 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验