Suppr超能文献

解码神经性疼痛:我们能否预测受刺激外周神经中传导速度的波动?

Decoding Neuropathic Pain: Can We Predict Fluctuations of Propagation Speed in Stimulated Peripheral Nerve?

作者信息

Kutafina Ekaterina, Troglio Alina, de Col Roberto, Röhrig Rainer, Rossmanith Peter, Namer Barbara

机构信息

Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland.

出版信息

Front Comput Neurosci. 2022 Jul 28;16:899584. doi: 10.3389/fncom.2022.899584. eCollection 2022.

Abstract

To understand neural encoding of neuropathic pain, evoked and resting activity of peripheral human C-fibers are studied microneurography experiments. Before different spiking patterns can be analyzed, spike sorting is necessary to distinguish the activity of particular fibers of a recorded bundle. Due to single-electrode measurements and high noise contamination, standard methods based on spike shapes are insufficient and need to be enhanced with additional information. Such information can be derived from the activity-dependent slowing of the fiber propagation speed, which in turn can be assessed by introducing continuous "background" 0.125-0.25 Hz electrical stimulation and recording the corresponding responses from the fibers. Each fiber's speed propagation remains almost constant in the absence of spontaneous firing or additional stimulation. This way, the responses to the "background stimulation" can be sorted by fiber. In this article, we model the changes in the propagation speed resulting from the history of fiber activity with polynomial regression. This is done to assess the feasibility of using the developed models to enhance the spike shape-based sorting. In addition to human microneurography data, we use animal recordings with a similar stimulation protocol as higher signal-to-noise ratio data example for the models.

摘要

为了理解神经性疼痛的神经编码,通过微神经ography实验研究了人外周C纤维的诱发活动和静息活动。在分析不同的放电模式之前,需要进行尖峰分类以区分记录束中特定纤维的活动。由于单电极测量和高噪声污染,基于尖峰形状的标准方法并不充分,需要用额外的信息进行增强。这样的信息可以从纤维传播速度的活动依赖性减慢中获得,这反过来又可以通过引入连续的“背景”0.125 - 0.25Hz电刺激并记录纤维的相应反应来评估。在没有自发放电或额外刺激的情况下,每根纤维的速度传播几乎保持恒定。通过这种方式,可以按纤维对“背景刺激”的反应进行分类。在本文中,我们用多项式回归对由纤维活动历史引起的传播速度变化进行建模。这样做是为了评估使用所开发的模型来增强基于尖峰形状的分类的可行性。除了人类微神经ography数据外,我们还使用具有类似刺激方案的动物记录作为模型的高信噪比数据示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/002d/9366140/cb8312dfdb81/fncom-16-899584-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验