Suppr超能文献

利用自然语言处理软件识别可疑胰腺病变。

Utilization of Natural Language Processing Software to Identify Worrisome Pancreatic Lesions.

机构信息

Department Surgery, Cooper University Hospital, Camden, NJ, USA.

Cooper Medical School of Rowan University, Camden, NJ, USA.

出版信息

Ann Surg Oncol. 2022 Dec;29(13):8513-8519. doi: 10.1245/s10434-022-12391-6. Epub 2022 Aug 15.

Abstract

BACKGROUND

Computed tomography (CT) imaging is routinely obtained for diagnostics, especially in trauma and emergency rooms, often identifying incidental findings. We utilized a natural language processing (NLP) algorithm to quantify the incidence of clinically relevant pancreatic lesions in CT imaging.

PATIENTS AND METHODS

We utilized the electronic medical record to perform a retrospective chart review of adult patients admitted for trauma to a level 1 tertiary care center between 2010 and 2020 who underwent abdominal CT imaging. An open-source NLP software was used to identify patients with intrapapillary mucinous neoplasms (IPMN), pancreatic cysts, pancreatic ductal dilation, or pancreatic masses after optimizing the algorithm using a test group of patients who underwent pancreatic surgery.

RESULTS

The algorithm identified pancreatic lesions in 27 of 28 patients who underwent pancreatic surgery and excluded 1 patient who had a pure ampullary mass. The study cohort consisted of 18,769 patients who met our inclusion criteria admitted to the hospital. Of this population, 232 were found to have pancreatic lesions of interest. There were 48 (20.7%) patients with concern for IPMN, pancreatic cysts in 36 (15.5%), concerning masses in 30 (12.9%), traumatic findings in 44 (19.0%), pancreatitis in 41 (17.7%), and ductal abnormalities in 19 (18.2%) patients. Prior pancreatic surgery and other findings were identified in 14 (6.0%) patients.

CONCLUSIONS

In this study, we propose a novel use of NLP software to identify potentially malignant pancreatic lesions annotated in CT imaging performed for other purposes. This methodology can significantly increase the screening and automated referral for the management of precancerous lesions.

摘要

背景

计算机断层扫描(CT)成像通常用于诊断,尤其是在创伤和急诊室,经常可以发现偶然发现的病变。我们利用自然语言处理(NLP)算法来量化 CT 成像中临床相关胰腺病变的发生率。

患者和方法

我们利用电子病历对 2010 年至 2020 年期间在一家一级三级护理中心因创伤住院的成年患者进行了回顾性图表审查,这些患者接受了腹部 CT 成像。使用开源 NLP 软件,通过对接受胰腺手术的患者进行测试组优化算法,来识别出具有胰管内乳头状黏液性肿瘤(IPMN)、胰腺囊肿、胰管扩张或胰腺肿块的患者。

结果

该算法在 28 名接受胰腺手术的患者中识别出了胰腺病变,并排除了 1 名仅有壶腹肿块的患者。研究队列包括符合我们入院标准的 18769 名患者。在这一人群中,有 232 名患者被发现有胰腺病变。其中 48 例(20.7%)患者有 IPMN 相关问题,36 例(15.5%)患者有胰腺囊肿,30 例(12.9%)患者有可疑肿块,44 例(19.0%)患者有创伤性发现,41 例(17.7%)患者有胰腺炎,19 例(18.2%)患者有胰管异常。14 例(6.0%)患者有先前的胰腺手术和其他发现。

结论

在这项研究中,我们提出了一种利用 NLP 软件识别 CT 成像中其他目的注释的潜在恶性胰腺病变的新方法。这种方法可以显著增加癌前病变的筛查和自动转诊管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验