IEEE/ACM Trans Comput Biol Bioinform. 2023 Nov-Dec;20(6):3389-3398. doi: 10.1109/TCBB.2022.3198998. Epub 2023 Dec 25.
Arrhythmia is an abnormal heart rhythm, a common clinical problem in cardiology. Long-term or severe arrhythmia may lead to stroke and sudden cardiac death. The electrocardiogram (ECG) is the most commonly used tool to diagnose arrhythmia. However, the traditional diagnosis relies on experts for manual interpretation, which is time-consuming and laborious. In recent years, many automatic arrhythmia detection methods have emerged due to advancements in deep learning. These methods can reduce manual intervention and improve diagnostic efficiency. However, extracting useful features from raw ECG signals for arrhythmia detection is still challenging due to the low frequency of ECG signals and noise distribution. In this paper, we propose a novel hidden attention residual network (HA-ResNet) for automated arrhythmia classification. In this model, the one-dimensional ECG signals are first converted into two-dimensional images and fed into an embedding layer to obtain the relevant shallow features in ECG. Then, a hidden attention layer combining Squeeze-and-Excitation (SE) block and Bidirectional Convolutional LSTM (BConvLSTM) is used to further capture the deep Spatio-temporal features. We evaluate our HA-ResNet on two public datasets and achieve F1 scores of 96.0%, 96.7%, and 87.6% on 2s segments, 5s segments, and 10s segments, respectively, which significantly outperform the existing state-of-the-art approaches. The experimental results demonstrate the effectiveness and generalization of our method.
心律失常是一种异常的心律,是心脏病学中的常见临床问题。长期或严重的心律失常可能导致中风和心源性猝死。心电图(ECG)是诊断心律失常最常用的工具。然而,传统的诊断依赖于专家进行手动解释,这既耗时又费力。近年来,由于深度学习的进步,出现了许多自动心律失常检测方法。这些方法可以减少手动干预,提高诊断效率。然而,由于 ECG 信号的频率低和噪声分布,从原始 ECG 信号中提取用于心律失常检测的有用特征仍然具有挑战性。在本文中,我们提出了一种新颖的隐藏注意力残差网络(HA-ResNet),用于自动化心律失常分类。在该模型中,首先将一维 ECG 信号转换为二维图像,并将其输入到嵌入层中,以获取 ECG 中的相关浅层特征。然后,使用结合了 Squeeze-and-Excitation (SE) 块和双向卷积长短期记忆网络(BConvLSTM)的隐藏注意力层进一步捕获深度时空特征。我们在两个公共数据集上评估了我们的 HA-ResNet,并在 2s 段、5s 段和 10s 段上分别获得了 96.0%、96.7%和 87.6%的 F1 分数,明显优于现有的最先进方法。实验结果证明了我们方法的有效性和泛化能力。