Gong Zheng, Chen Yufeng, Lin Shirong, Ke Jun, Huang Juying, Chen Hongyi, Huang Hongyu, Shen Yue, Gu Yi, Chen Lixun, Chen Feng
Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China.
Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian, China.
PLoS One. 2025 Sep 2;20(9):e0330279. doi: 10.1371/journal.pone.0330279. eCollection 2025.
Early diagnosis of cardiovascular diseases (CVDs) is essential for improving patient outcomes. As a primary diagnostic modality, electrocardiogram (ECG) signals pose challenges for automatic classification due to their complex temporal and morphological characteristics. This study proposes a CNN-CBAM-GRU model that integrates Convolutional Neural Networks (CNN), the Convolutional Block Attention Module (CBAM), and Gated Recurrent Units (GRU) to enhance both spatial feature representation and temporal sequence modeling. The model is evaluated on two public ECG datasets-MIT-BIH and PTB-XL-under five-class classification settings. Unlike many existing approaches that report only a limited set of metrics, this study conducts a comprehensive evaluation across multiple performance indicators, including accuracy, precision, recall, sensitivity, and F1-score, providing a more complete view of classification effectiveness. Experimental results demonstrate that the proposed model achieves a strong balance between predictive performance and computational efficiency. Specifically, it achieves 98.17% accuracy and 98.91% F1-score on MIT-BIH, and 99.21% accuracy and 99.47% F1-score on PTB-XL, with a compact parameter size of 2.45 million. These findings validate the proposed model as a practical and robust solution for intelligent ECG classification and automated cardiovascular disease diagnosis.
心血管疾病(CVD)的早期诊断对于改善患者预后至关重要。作为主要的诊断方式,心电图(ECG)信号因其复杂的时间和形态特征,在自动分类方面面临挑战。本研究提出了一种CNN-CBAM-GRU模型,该模型集成了卷积神经网络(CNN)、卷积块注意力模块(CBAM)和门控循环单元(GRU),以增强空间特征表示和时间序列建模。该模型在两个公共ECG数据集——MIT-BIH和PTB-XL上进行了五类分类设置下的评估。与许多仅报告有限指标集的现有方法不同,本研究对包括准确率、精确率、召回率、灵敏度和F1分数在内的多个性能指标进行了全面评估,从而更全面地了解分类效果。实验结果表明,所提出的模型在预测性能和计算效率之间实现了良好的平衡。具体而言,它在MIT-BIH上达到了98.17%的准确率和98.91%的F1分数,在PTB-XL上达到了99.21%的准确率和99.47%的F1分数,参数规模紧凑,为245万个。这些发现验证了所提出的模型是智能ECG分类和自动化心血管疾病诊断的一种实用且强大的解决方案。