Institute of Global Health, Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia.
PLoS Negl Trop Dis. 2022 Aug 15;16(8):e0010647. doi: 10.1371/journal.pntd.0010647. eCollection 2022 Aug.
Snakebite envenoming is a neglected tropical disease that kills an estimated 81,000 to 138,000 people and disables another 400,000 globally every year. The World Health Organization aims to halve this burden by 2030. To achieve this ambitious goal, we need to close the data gap in snake ecology and snakebite epidemiology and give healthcare providers up-to-date knowledge and access to better diagnostic tools. An essential first step is to improve the capacity to identify biting snakes taxonomically. The existence of AI-based identification tools for other animals offers an innovative opportunity to apply machine learning to snake identification and snakebite envenoming, a life-threatening situation.
We developed an AI model based on Vision Transformer, a recent neural network architecture, and a comprehensive snake photo dataset of 386,006 training photos covering 198 venomous and 574 non-venomous snake species from 188 countries. We gathered photos from online biodiversity platforms (iNaturalist and HerpMapper) and a photo-sharing site (Flickr).
The model macro-averaged F1 score, which reflects the species-wise performance as averaging performance for each species, is 92.2%. The accuracy on a species and genus level is 96.0% and 99.0%, respectively. The average accuracy per country is 94.2%. The model accurately classifies selected venomous and non-venomous lookalike species from Southeast Asia and sub-Saharan Africa.
To our knowledge, this model's taxonomic and geographic coverage and performance are unprecedented. This model could provide high-speed and low-cost snake identification to support snakebite victims and healthcare providers in low-resource settings, as well as zoologists, conservationists, and nature lovers from across the world.
蛇伤中毒是一种被忽视的热带病,每年在全球范围内估计导致 81,000 至 138,000 人死亡,400,000 人致残。世界卫生组织的目标是到 2030 年将这一负担减半。为了实现这一雄心勃勃的目标,我们需要缩小蛇类生态学和蛇伤流行病学的数据差距,并为医疗保健提供者提供最新的知识和更好的诊断工具。至关重要的第一步是提高对咬人的蛇进行分类学识别的能力。其他动物的基于人工智能的识别工具的存在为将机器学习应用于蛇类识别和蛇伤中毒提供了一个创新的机会,而后者是一种危及生命的情况。
我们开发了一种基于 Vision Transformer 的人工智能模型,这是一种新的神经网络架构,以及一个包含 386,006 张训练照片的综合蛇类照片数据集,涵盖了来自 188 个国家的 198 种有毒和 574 种无毒蛇类。我们从在线生物多样性平台(iNaturalist 和 HerpMapper)和一个照片共享网站(Flickr)收集照片。
该模型的宏观平均 F1 分数为 92.2%,反映了物种级别的性能,即平均每个物种的性能。在物种和属级别上的准确率分别为 96.0%和 99.0%。每个国家的平均准确率为 94.2%。该模型能够准确地区分来自东南亚和撒哈拉以南非洲的选定有毒和无毒似是而非的物种。
据我们所知,该模型的分类学和地理覆盖范围以及性能是前所未有的。该模型可以为支持在资源匮乏环境中的蛇伤受害者和医疗保健提供者以及来自世界各地的动物学家、保护主义者和自然爱好者提供高速、低成本的蛇类识别。