Michigan State University, Department of Kinesiology, United States of America.
Indiana University School of Medicine, Department of Biostatistics and Health Data Science, United States of America.
Physiol Meas. 2022 Sep 5;43(9). doi: 10.1088/1361-6579/ac89ca.
Use of raw acceleration data and/or 'novel' analytic approaches like machine learning for physical activity measurement will not be widely implemented if methods are not accessible to researchers.: This scoping review characterizes the validation approach, accessibility and use of novel analytic techniques for classifying energy expenditure and/or physical activity intensity using raw or count-based accelerometer data.: Three databases were searched for articles published between January 2000 and February 2021. Use of each method was coded from a list of citing articles compiled from Google Scholar. Authors' provision of access to the model (e.g., by request, sample code) was recorded.: Studies (N = 168) included adults (n = 143), and/or children (n = 38). Model use ranged from 0 to 27 uses/year (average 0.83) with 101 models that have never been used. Approximately half of uses occurred in a free-living setting (52%) and/or by other authors (56%). Over half of included articles (n = 107) did not provide complete access to their model. Sixty-one articles provided access to their method by including equations, coefficients, cut-points, or decision trees in the paper (n = 48) and/or by providing access to code (n = 13).: The proliferation of approaches for analyzing accelerometer data outpaces the use of these models in practice. As less than half of the developed models are made accessible, it is unsurprising that so many models are not used by other researchers. We encourage researchers to make their models available and accessible for better harmonization of methods and improved capabilities for device-based physical activity measurement.
如果研究人员无法获得方法,那么使用原始加速度数据和/或“新颖”的分析方法(如机器学习)来测量身体活动将不会得到广泛应用。本范围综述描述了验证方法的特点,以及使用新颖的分析技术对使用原始或计数值加速度计数据分类能量消耗和/或身体活动强度的可及性和使用情况。从三个数据库中搜索了 2000 年 1 月至 2021 年 2 月期间发表的文章。从从 Google Scholar 上汇编的引用文章列表中对每种方法的使用情况进行了编码。记录了作者提供模型访问权限的情况(例如,通过请求、示例代码)。研究(N=168)包括成年人(n=143)和/或儿童(n=38)。模型的使用范围从每年 0 到 27 次(平均 0.83 次),其中 101 个模型从未使用过。大约一半的使用发生在自由生活环境中(52%)和/或由其他作者(56%)进行。超过一半的纳入文章(n=107)没有提供其模型的完整访问权限。61 篇文章通过在论文中包含方程、系数、切点或决策树(n=48)和/或通过提供对代码的访问(n=13)来提供对其方法的访问权限。用于分析加速度计数据的方法的扩散速度超过了这些模型在实践中的使用速度。由于开发的模型中只有不到一半是可访问的,因此许多模型没有被其他研究人员使用也就不足为奇了。我们鼓励研究人员提供他们的模型,以实现方法的更好协调,并提高基于设备的身体活动测量的能力。