Utah State University, Department of Kinesiology and Health Science, United States of America.
Alma College, Integrative Physiology and Health Science, United States of America.
Physiol Meas. 2022 Sep 5;43(9). doi: 10.1088/1361-6579/ac89c9.
The proliferation of approaches for analyzing accelerometer data using raw acceleration or novel analytic approaches like machine learning ('novel methods') outpaces their implementation in practice. This may be due to lack of accessibility, either because authors do not provide their developed models or because these models are difficult to find when included as supplementary material. Additionally, when access to a model is provided, authors may not include example data or instructions on how to use the model. This further hinders use by other researchers, particularly those who are not experts in statistics or writing computer code.: We created a repository of novel methods of analyzing accelerometer data for the estimation of energy expenditure and/or physical activity intensity and a framework and reporting guidelines to guide future work.: Methods were identified from a recent scoping review. Available code, models, sample data, and instructions were compiled or created.: Sixty-three methods are hosted in the repository, in preschoolers (n = 6), children/adolescents (n = 20), and adults (n = 42), using hip (n = 45), wrist (n = 25), thigh (n = 4), chest (n = 4), ankle (n = 6), other (n = 4), or a combination of monitor wear locations (n = 9). Fifteen models are implemented in R, while 48 are provided as cut-points, equations, or decision trees.: The developed tools should facilitate the use and development of novel methods for analyzing accelerometer data, thus improving data harmonization and consistency across studies. Future advances may involve including models that authors did not link to the original published article or those which identify activity type.
分析加速度计数据的方法层出不穷,包括原始加速度分析方法和机器学习等新颖分析方法(“新颖方法”),但这些方法在实践中的应用却落后于其发展速度。造成这种情况的原因可能是缺乏获取途径,这要么是因为作者没有提供他们开发的模型,要么是因为这些模型作为补充材料很难找到。此外,当提供模型访问权限时,作者可能没有包含示例数据或关于如何使用模型的说明。这进一步阻碍了其他研究人员的使用,特别是那些不精通统计学或编写计算机代码的研究人员。
我们创建了一个用于估算能量消耗和/或身体活动强度的加速度计数据新颖分析方法的存储库,并制定了框架和报告指南,以指导未来的工作。
方法是从最近的范围综述中确定的。可用的代码、模型、示例数据和说明被编译或创建。
该存储库中托管了 63 种方法,适用于学龄前儿童(n=6)、儿童/青少年(n=20)和成年人(n=42),使用的监测器佩戴位置包括髋部(n=45)、手腕(n=25)、大腿(n=4)、胸部(n=4)、脚踝(n=6)、其他部位(n=4)或组合监测器佩戴位置(n=9)。其中 15 种模型在 R 中实现,而 48 种则以临界点、方程或决策树的形式提供。
所开发的工具应有助于分析加速度计数据的新颖方法的使用和发展,从而改善研究之间数据的协调和一致性。未来的进展可能涉及包括作者未链接到原始已发表文章的模型,或那些识别活动类型的模型。