Cognitive Neuroscience, 711th HPW, AFRL, Wright-Patterson AFB, OH, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
Cognitive Neuroscience, 711th HPW, AFRL, Wright-Patterson AFB, OH, USA; Infoscitex, Inc., Dayton, OH, USA.
Brain Stimul. 2022 Sep-Oct;15(5):1101-1110. doi: 10.1016/j.brs.2022.08.001. Epub 2022 Aug 12.
BACKGROUND: Vagus nerve stimulation (VNS) improves cognition in humans and rodents, but the effects of a single session of VNS on performance and plasticity are not well understood. OBJECTIVE: Behavioral performance and hippocampal (HC) electrophysiology/neurotrophin expression were measured in healthy adult rats after VNS paired training to investigate changes in cognition and synaptic plasticity. METHODS: Platinum/iridium electrodes were surgically implanted around the left cervical branch of the VN of anesthetized male Sprague-Dawley rats (N = 47). VNS (100 μs biphasic pulses, 30 Hz, 0.8 mA) paired Novel Object Recognition (NOR)/Passive Avoidance Task (PAT) were assessed 24 h after training and post-mortem tissue was collected 48 h after VNS (N = 28). Electrophysiology recordings were collected using a microelectrode array system to assess functional effects on HC slices 90 min after VNS (N = 19). Sham received the same treatment without VNS and experimenters were blinded. RESULTS: Stimulated rats exhibited improved performance in NOR (p < 0.05, n = 12) and PAT (p < 0.05, n = 14). VNS enhanced long-term potentiation (p < 0.05, n = 7-12), and spontaneous spike amplitude (p < 0.05, n = 7-12) and frequency (p < 0.05, n = 7-12) in the CA1. Immunohistochemical analysis found increased brain-derived neurotrophic factor expression in the CA1 (p < 0.05, n = 8-9) and CA2 (p < 0.01, n = 7-8). CONCLUSION: These findings suggest that our VNS parameters promote synaptic plasticity and target the CA1, which may mediate the positive cognitive effects of VNS. This study significantly contributes to a better understanding of VNS mediated HC synaptic plasticity, which may improve clinical utilization of VNS for cognitive enhancement.
背景:迷走神经刺激(VNS)可改善人类和啮齿动物的认知能力,但单次 VNS 对性能和可塑性的影响尚不清楚。 目的:在健康成年大鼠中,通过 VNS 配对训练来测量行为表现和海马(HC)电生理学/神经营养因子表达,以研究认知和突触可塑性的变化。 方法:将铂/铱电极手术植入麻醉雄性 Sprague-Dawley 大鼠左侧颈分支迷走神经周围(N=47)。在训练后 24 小时进行 VNS(100μs 双相脉冲,30Hz,0.8mA)与新物体识别(NOR)/被动回避任务(PAT)配对评估,并在 VNS 后 48 小时(N=28)收集死后组织。使用微电极阵列系统进行电生理学记录,以评估 VNS 后 90 分钟 HC 切片的功能影响(N=19)。假刺激组接受相同的治疗但不进行 VNS,实验者被设盲。 结果:刺激组大鼠在 NOR(p<0.05,n=12)和 PAT(p<0.05,n=14)中的表现得到改善。VNS 增强了长时程增强(p<0.05,n=7-12),以及 CA1 中的自发尖峰幅度(p<0.05,n=7-12)和频率(p<0.05,n=7-12)。免疫组织化学分析发现 CA1(p<0.05,n=8-9)和 CA2(p<0.01,n=7-8)中的脑源性神经营养因子表达增加。 结论:这些发现表明,我们的 VNS 参数促进了突触可塑性,并针对 CA1,这可能介导了 VNS 的积极认知效果。本研究对更好地理解 VNS 介导的 HC 突触可塑性有重要意义,这可能有助于提高 VNS 用于认知增强的临床应用。
J Neurosci. 2019-2-25
Physiol Behav. 2007-3-16
Int J Neuropsychopharmacol. 2009-10
Brain Stimul. 2018-7-18
Front Behav Neurosci. 2025-6-6
Acta Neurol Belg. 2025-6