Texas Biomedical Device Center, Richardson, TX 75080, United States.
Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States.
Brain Stimul. 2018 Mar-Apr;11(2):271-277. doi: 10.1016/j.brs.2017.11.007. Epub 2017 Nov 15.
BACKGROUND: Repeatedly pairing a tone with a brief burst of vagus nerve stimulation (VNS) results in a reorganization of primary auditory cortex (A1). The plasticity-enhancing and memory-enhancing effects of VNS follow an inverted-U response to stimulation intensity, in which moderate intensity currents yield greater effects than low or high intensity currents. It is not known how other stimulation parameters effect the plasticity-enhancing effects of VNS. OBJECTIVE: We sought to investigate the effect of pulse-width and intensity on VNS efficacy. Here, we used the extent of plasticity induced by VNS-tone pairing to assess VNS efficacy. METHODS: Rats were exposed to a 9 kHz tone paired to VNS with varying current intensities and pulse widths. Cortical plasticity was measured as changes in the percent of area of primary auditory cortex responding to a range of sounds in VNS-treated rats relative to naïve rats. RESULTS: We find that a combination of low current intensity (200 μA) and short pulse duration (100 μs) is insufficient to drive cortical plasticity. Increasing the pulse duration to 500 μs results in a reorganization of receptive fields in A1 auditory cortex. The extent of plasticity engaged under these conditions is less than that driven by conditions previously reported to drive robust plasticity (800 μA with 100 μs wide pulses). CONCLUSION: These results suggest that the plasticity-enhancing and memory-enhancing effects of VNS follow an inverted-U response of stimulation current that is influenced by pulse width. Furthermore, shorter pulse widths may offer a clinical advantage when determining optimal stimulation current. These findings may facilitate determination of optimal VNS parameters for clinical application.
背景:反复将音调与短暂的迷走神经刺激 (VNS) 配对会导致初级听觉皮层 (A1) 的重组。VNS 的可塑性增强和记忆增强效应遵循刺激强度的倒 U 型反应,其中中等强度的电流比低强度或高强度的电流产生更大的效果。目前尚不清楚其他刺激参数如何影响 VNS 的可塑性增强效应。
目的:我们旨在研究脉冲宽度和强度对 VNS 疗效的影响。在这里,我们使用 VNS-音调配对诱导的可塑性程度来评估 VNS 的疗效。
方法:将大鼠暴露于 9 kHz 音调与不同电流强度和脉冲宽度的 VNS 配对。皮质可塑性通过 VNS 处理大鼠相对于未处理大鼠对一系列声音的初级听觉皮层响应面积的百分比变化来测量。
结果:我们发现,低电流强度(200 μA)和短脉冲持续时间(100 μs)的组合不足以驱动皮质可塑性。将脉冲持续时间增加到 500 μs 会导致 A1 听觉皮层的感受野重组。在这些条件下,所涉及的可塑性程度小于先前报道的驱动强大可塑性的条件(800 μA 宽 100 μs 的脉冲)。
结论:这些结果表明,VNS 的可塑性增强和记忆增强效应遵循刺激电流的倒 U 型反应,受脉冲宽度的影响。此外,较短的脉冲宽度在确定最佳刺激电流时可能具有临床优势。这些发现可能有助于确定 VNS 用于临床应用的最佳参数。
Brain Stimul. 2018-7-18
Neuroscience. 2018-7-29
J Neurophysiol. 2019-6-19
Neuroscience. 2017-11-10
Brain Stimul. 2018-11-3
Front Neurosci. 2025-6-13
Curr Issues Mol Biol. 2025-2-14
Bioelectron Med. 2025-2-3
J Cent Nerv Syst Dis. 2024-12-13
Neurorehabil Neural Repair. 2016-8
Int J Neural Syst. 2015-9-14