West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
Department of Project Design and Statistics, West China Hospital, Sichuan University, Chengdu 610041, China.
Sci Total Environ. 2022 Dec 1;850:158003. doi: 10.1016/j.scitotenv.2022.158003. Epub 2022 Aug 12.
Numerous studies have studied the association between daily average temperature (DAT) and daily COVID-19 confirmed cases, which show considerable heterogeneity, even opposite results, among different regions. Such heterogeneity suggests that characterizing the association on a large area scale would ignore the local variation, even obtain false results in some local regions. So, characterizing the spatial distribution of heterogeneous DAT-COVID-19 associations and exploring the causes plays an important role on making temperature-related region-specific intervention measures and early-warning systems.
Aiming to characterize the spatial distribution of associations between DAT and COVID-19 confirmed cases in the continental United States, we proposed a novel two-stage strategy. In the first stage, we used the common stratified distributed lag nonlinear model to obtain the rough state-specific associations. In the second stage, conditional autoregression was used to spatially smooth the rough estimations. Furtherly, based on the idea, two modified strategies were used to investigate the time-varying associations and the modification effects derived from the vaccination campaign.
Around one-third of states exhibit no significant association between DAT and daily confirmed COVID-19 cases. Most of the remaining states present a low risk at low DAT and a high risk at high DAT, but several states present opposite associations. The average association curve presents a 'S' shape with positive association between -8 - 18 °C and keeping flat out of the range. An increased vaccination coverage rate will increase the risk when DAT < 12 °C, but slightly affect the risk when DAT > 12 °C.
A considerable spatial heterogeneity of DAT-COVID-19 associations exists in America and the average association curve presents a 'S' shape. The vaccination campaign significantly modifies the association when DAT is low, but only make a slight modification when DAT is high.
许多研究都研究了日平均温度(DAT)与每日 COVID-19 确诊病例之间的关系,这些研究在不同地区之间存在相当大的异质性,甚至得出了相反的结果。这种异质性表明,在大区域尺度上刻画这种关联会忽略局部变化,甚至在某些局部地区得到错误的结果。因此,刻画 DAT-COVID-19 关联的空间分布并探索其原因,对于制定与温度相关的特定区域干预措施和预警系统具有重要意义。
为了刻画美国大陆 DAT 与 COVID-19 确诊病例之间关联的空间分布,我们提出了一种新的两阶段策略。在第一阶段,我们使用常见的分层分布滞后非线性模型来获得大致的州特定关联。在第二阶段,条件自回归用于对粗糙估计进行空间平滑。此外,基于这一思路,我们使用两种改进的策略来研究时间变化的关联和疫苗接种运动带来的修正效应。
大约三分之一的州发现 DAT 与每日确诊的 COVID-19 病例之间没有显著关联。其余大多数州在低 DAT 时风险较低,在高 DAT 时风险较高,但也有几个州呈现相反的关联。平均关联曲线呈“S”形,在-8-18°C 之间呈正相关,超出范围则保持平坦。接种率的增加会增加 DAT<12°C 时的风险,但对 DAT>12°C 时的风险影响较小。
美国 DAT-COVID-19 关联存在相当大的空间异质性,平均关联曲线呈“S”形。疫苗接种运动显著改变了 DAT 较低时的关联,但对 DAT 较高时的关联只有轻微影响。