Suppr超能文献

十二座意大利城市中 COVID-19 发病率与空气温度暴露时滞关系的荟萃分析。

Exposure-lag response of air temperature on COVID-19 incidence in twelve Italian cities: A meta-analysis.

机构信息

Newcastle University Medicine Malaysia, No. 1, Jalan Sarjana 1, Kota Ilmu, EduCity@Iskandar, 79200, Iskandar Puteri, Johor, Malaysia.

Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.

出版信息

Environ Res. 2022 Sep;212(Pt A):113099. doi: 10.1016/j.envres.2022.113099. Epub 2022 Mar 16.

Abstract

The exposure-lag response of air temperature on daily COVID-19 incidence is unclear and there have been concerns regarding the robustness of previous studies. Here we present an analysis of high spatial and temporal resolution using the distributed lag non-linear modelling (DLNM) framework. Utilising nearly two years' worth of data, we fit statistical models to twelve Italian cities to quantify the delayed effect of air temperature on daily COVID-19 incidence, accounting for several categories of potential confounders (meteorological, air quality and non-pharmaceutical interventions). Coefficients and covariance matrices for the temperature term were then synthesised using random effects meta-analysis to yield pooled estimates of the exposure-lag response with effects presented as the relative risk (RR) and cumulative RR (RR). The cumulative exposure response curve was non-linear, with peak risk at 15.1 °C and declining risk at progressively lower and higher temperatures. The lowest RR at 0.2 °C is 0.72 [0.56,0.91] times that of the highest risk. Due to this non-linearity, the shape of the lag response curve necessarily varied by temperature. This work suggests that on a given day, air temperature approximately 15 °C maximises the incidence of COVID-19, with the effects distributed in the subsequent ten days or more.

摘要

目前对于气温与每日新增 COVID-19 病例之间的滞后关系尚不清楚,并且此前的研究结果也存在稳健性问题。在这里,我们使用分布式滞后非线性模型(DLNM)框架进行了高时空分辨率的分析。我们利用近两年来的数据,拟合了 12 个意大利城市的统计模型,以量化气温对每日 COVID-19 发病率的滞后影响,同时考虑了多个潜在混杂因素类别(气象、空气质量和非药物干预措施)。然后,我们使用随机效应荟萃分析综合了温度项的系数和协方差矩阵,得出了气温与滞后效应之间的综合估计值,以相对风险(RR)和累积 RR(RR)表示。累积暴露反应曲线是非线性的,在 15.1°C 时风险最高,随着温度的降低和升高,风险逐渐降低。最低温度 0.2°C 的 RR 为 0.72[0.56,0.91],为最高风险的 72%。由于这种非线性,滞后反应曲线的形状必然随温度而变化。这项研究表明,在特定的一天,气温约为 15°C 时 COVID-19 的发病率最高,其影响会在随后的十天或更长时间内持续分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/120f/8925100/001809a945ec/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验