Suppr超能文献

基于群体感受野数据的事后分析中的陷阱。

Pitfalls in post hoc analyses of population receptive field data.

机构信息

Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK.

Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK.

出版信息

Neuroimage. 2022 Nov;263:119557. doi: 10.1016/j.neuroimage.2022.119557. Epub 2022 Aug 12.

Abstract

Data binning involves grouping observations into bins and calculating bin-wise summary statistics. It can cope with overplotting and noise, making it a versatile tool for comparing many observations. However, data binning goes awry if the same observations are used for binning (selection) and contrasting (selective analysis). This creates circularity, biasing noise components and resulting in artifactual changes in the form of regression towards the mean. Importantly, these artifactual changes are a statistical necessity. Here, we use (null) simulations and empirical repeat data to expose this flaw in the scope of post hoc analyses of population receptive field data. In doing so, we reveal that the type of data analysis, data properties, and circular data cleaning are factors shaping the appearance of such artifactual changes. We furthermore highlight that circular data cleaning and circular sorting of change scores are selection practices that result in artifactual changes even without circular data binning. These pitfalls might have led to erroneous claims about changes in population receptive fields in previous work and can be mitigated by using independent data for selection purposes. Our evaluations highlight the urgency for us researchers to make the validation of analysis pipelines standard practice.

摘要

数据分箱涉及将观测值分组到分箱中并计算分箱的汇总统计信息。它可以处理重叠和噪声,因此是比较许多观测值的通用工具。但是,如果对分箱(选择)和对比(选择性分析)使用相同的观测值,那么数据分箱就会出错。这会产生循环,偏向噪声分量,并导致回归均值形式的人为变化。重要的是,这些人为变化是统计上的必然。在这里,我们使用(无效)模拟和经验重复数据来揭示这种在群体感受野数据事后分析范围内的缺陷。通过这样做,我们揭示了数据分析的类型、数据特性和循环数据清理是塑造这种人为变化外观的因素。我们还强调,即使没有循环数据分箱,循环数据清理和变化分数的循环排序也是导致人为变化的选择实践。这些陷阱可能导致以前的工作中关于群体感受野变化的错误主张,并且可以通过使用独立数据进行选择来减轻。我们的评估强调了我们研究人员使分析管道验证成为标准实践的紧迫性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2999/7617406/c44c0ec33ada/EMS203007-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验