Svalina Matthew N, Rio Christian A Cea-Del, Kushner J Keenan, Levy Abigail, Baca Serapio M, Guthman E Mae, Opendak Maya, Sullivan Regina M, Restrepo Diego, Huntsman Molly M
Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
J Neurosci. 2022 Sep 21;42(38):7294-7308. doi: 10.1523/JNEUROSCI.1776-21.2022.
Fragile X Syndrome is a neurodevelopmental disorder and the most common monogenic cause of intellectual disability, autism spectrum disorders, and anxiety disorders. Loss of fragile x mental retardation protein results in disruptions of synaptic development during a critical period of circuit formation in the BLA. However, it is unknown how these alterations impact microcircuit development and function. Using a combination of electrophysiologic and behavioral approaches in both male (-/y) and female (-/-) mice, we demonstrate that principal neurons in the KO BLA exhibit hyperexcitability during a sensitive period in amygdala development. This hyperexcitability contributes to increased excitatory gain in fear-learning circuits. Further, synaptic plasticity is enhanced in the BLA of KO mice. Behavioral correlation demonstrates that fear-learning emerges precociously in the KO mouse. Early life 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3ol intervention ameliorates fear-learning in mice. These results suggest that critical period plasticity in the amygdala of the KO mouse may be shifted to earlier developmental time points. In these studies, we identify early developmental alterations in principal neurons in the Fragile X syndrome BLA. We show that, as early as P14, excitability and feedforward excitation, and synaptic plasticity are enhanced in Fmr1KO lateral amygdala. This correlates with precocious emergence of fear-learning in the KO mouse. Early life 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3ol intervention restores critical period plasticity in WT mice and ameliorates fear-learning in the KO mouse.
脆性X综合征是一种神经发育障碍,是智力残疾、自闭症谱系障碍和焦虑症最常见的单基因病因。脆性X智力低下蛋白的缺失导致杏仁核基底外侧核(BLA)在回路形成的关键时期突触发育中断。然而,尚不清楚这些改变如何影响微回路的发育和功能。通过对雄性(-/y)和雌性(-/-)小鼠结合使用电生理和行为学方法,我们证明敲除小鼠BLA中的主要神经元在杏仁核发育的敏感期表现出过度兴奋性。这种过度兴奋性导致恐惧学习回路中的兴奋性增益增加。此外,敲除小鼠的BLA中突触可塑性增强。行为相关性表明,敲除小鼠中恐惧学习早熟出现。生命早期4,5,6,7-四氢异恶唑并[5,4-c]吡啶-3-醇干预可改善小鼠的恐惧学习。这些结果表明,敲除小鼠杏仁核中的关键期可塑性可能转移到更早的发育时间点。在这些研究中,我们确定了脆性X综合征BLA中主要神经元的早期发育改变。我们表明,早在P14时,Fmr1基因敲除小鼠外侧杏仁核中的兴奋性和前馈兴奋以及突触可塑性就增强了。这与敲除小鼠中恐惧学习的早熟出现相关。生命早期4,5,6,7-四氢异恶唑并[5,4-c]吡啶-3-醇干预可恢复野生型小鼠的关键期可塑性并改善敲除小鼠的恐惧学习。