Utt Daniel, Lee Subin, Xing Yaolong, Jeong Hyejin, Stukowski Alexander, Oh Sang Ho, Dehm Gerhard, Albe Karsten
Fachgebiet Materialmodellierung, Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
Nat Commun. 2022 Aug 15;13(1):4777. doi: 10.1038/s41467-022-32134-1.
Dislocations in single-phase concentrated random alloys, including high-entropy alloys (HEAs), repeatedly encounter pinning during glide, resulting in jerky dislocation motion. While solute-dislocation interaction is well understood in conventional alloys, the origin of individual pinning points in concentrated random alloys is a matter of debate. In this work, we investigate the origin of dislocation pinning in the CoCrFeMnNi HEA. In-situ transmission electron microscopy studies reveal wavy dislocation lines and a jagged glide motion under external loading, even though no segregation or clustering is found around Shockley partial dislocations. Atomistic simulations reproduce the jerky dislocation motion and link the repeated pinning to local fluctuations in the Peierls friction. We demonstrate that the density of high local Peierls friction is proportional to the critical stress required for dislocation glide and the dislocation mobility.
单相集中随机合金(包括高熵合金,HEA)中的位错在滑移过程中会反复遇到钉扎,导致位错运动不平稳。虽然溶质 - 位错相互作用在传统合金中已得到充分理解,但集中随机合金中单个钉扎点的起源仍存在争议。在这项工作中,我们研究了CoCrFeMnNi高熵合金中位错钉扎的起源。原位透射电子显微镜研究表明,即使在肖克利不全位错周围未发现偏析或聚集现象,但在外部加载下仍存在波浪状位错线和锯齿状滑移运动。原子模拟再现了不平稳的位错运动,并将反复钉扎与派尔斯摩擦力的局部波动联系起来。我们证明,高局部派尔斯摩擦力的密度与位错滑移所需的临界应力和位错迁移率成正比。