Suppr超能文献

基于第一性原理研究化学波动对CrCoNi和CrMnFeCoNi高熵合金堆垛层错能的影响

Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles.

作者信息

Ikeda Yuji, Körmann Fritz, Tanaka Isao, Neugebauer Jörg

机构信息

Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany.

Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan.

出版信息

Entropy (Basel). 2018 Aug 30;20(9):655. doi: 10.3390/e20090655.

Abstract

Medium and high entropy alloys (MEAs and HEAs) based on 3d transition metals, such as face-centered cubic (fcc) CrCoNi and CrMnFeCoNi alloys, reveal remarkable mechanical properties. The stacking fault energy (SFE) is one of the key ingredients that controls the underlying deformation mechanism and hence the mechanical performance of materials. Previous experiments and simulations have therefore been devoted to determining the SFEs of various MEAs and HEAs. The impact of local chemical environment in the vicinity of the stacking faults is, however, still not fully understood. In this work, we investigate the impact of the compositional fluctuations in the vicinity of stacking faults for two prototype fcc MEAs and HEAs, namely CrCoNi and CrMnFeCoNi by employing first-principles calculations. Depending on the chemical composition close to the stacking fault, the intrinsic SFEs vary in the range of more than 150 mJ/m 2 for both the alloys, which indicates the presence of a strong driving force to promote particular types of chemical segregations towards the intrinsic stacking faults in MEAs and HEAs. Furthermore, the dependence of the intrinsic SFEs on local chemical fluctuations reveals a highly non-linear behavior, resulting in a non-trivial interplay of local chemical fluctuations and SFEs. This sheds new light on the importance of controlling chemical fluctuations via tuning, e.g., the annealing condition to obtain the desired mechanical properties for MEAs and HEAs.

摘要

基于3d过渡金属的中熵合金和高熵合金(MEA和HEA),如面心立方(fcc)的CrCoNi和CrMnFeCoNi合金,展现出卓越的力学性能。堆垛层错能(SFE)是控制潜在变形机制进而决定材料力学性能的关键因素之一。因此,先前的实验和模拟致力于确定各种MEA和HEA的SFE。然而,堆垛层错附近局部化学环境的影响仍未得到充分理解。在这项工作中,我们通过采用第一性原理计算,研究了两种典型的fcc MEA和HEA,即CrCoNi和CrMnFeCoNi堆垛层错附近成分波动的影响。根据堆垛层错附近的化学成分,两种合金的本征SFE在超过150 mJ/m² 的范围内变化,这表明存在强大的驱动力促使特定类型的化学偏析朝向MEA和HEA中的本征堆垛层错。此外,本征SFE对局部化学波动的依赖性揭示了一种高度非线性行为,导致局部化学波动和SFE之间存在复杂的相互作用。这为通过调整例如退火条件来控制化学波动以获得MEA和HEA所需力学性能的重要性提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c377/7513178/7bf75f445290/entropy-20-00655-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验