Department of Computer Science and Software Engineering, Concordia Universitygrid.410319.e, Montreal, Quebec, Canada.
Department of Biology, Concordia Universitygrid.410319.e, Montreal, Quebec, Canada.
Microbiol Spectr. 2022 Oct 26;10(5):e0147222. doi: 10.1128/spectrum.01472-22. Epub 2022 Aug 16.
We present deep learning-based approaches for exploring the complex array of morphologies exhibited by the opportunistic human pathogen Candida albicans. Our system, entitled Candescence, automatically detects C. albicans cells from differential image contrast microscopy and labels each detected cell with one of nine morphologies. This ranges from yeast white and opaque forms to hyphal and pseudohyphal filamentous morphologies. The software is based upon a fully convolutional one-stage (FCOS) object detector, a deep learning technique that uses an extensive set of images that we manually annotated with the location and morphology of each cell. We developed a novel cumulative curriculum-based learning strategy that stratifies our images by difficulty from simple yeast forms to complex filamentous architectures. Candescence achieves very good performance (~85% recall; 81% precision) on this difficult learning set, where some images contain hundreds of cells with substantial intermixing between the predicted classes. To capture the essence of each C. albicans morphology and how they intermix, we used a second technique from deep learning entitled generative adversarial networks. The resultant models allow us to identify and explore technical variables, developmental trajectories, and morphological switches. Importantly, the model allows us to quantitatively capture morphological plasticity observed with genetically modified strains or strains grown in different media and environments. We envision Candescence as a community meeting point for quantitative explorations of C. albicans morphology. The fungus Candida albicans can "shape shift" between 12 morphologies in response to environmental variables. The cytoprotective capacity provided by this polymorphism makes C. albicans a formidable pathogen to treat clinically. Microscopy images of C. albicans colonies can contain hundreds of cells in different morphological states. Manual annotation of images can be difficult, especially as a result of densely packed and filamentous colonies and of technical artifacts from the microscopy itself. Manual annotation is inherently subjective, depending on the experience and opinion of annotators. Here, we built a deep learning approach entitled Candescence to parse images in an automated, quantitative, and objective fashion: each cell in an image is located and labeled with its morphology. Candescence effectively replaces simple rules based on visual phenotypes (size, shape, and shading) with neural circuitry capable of capturing subtle but salient features in images that may be too complex for human annotators.
我们提出了基于深度学习的方法来探索机会性病原体白念珠菌所表现出的复杂形态。我们的系统名为 Candescence,它可以从相差显微镜的图像对比度中自动检测白念珠菌细胞,并将每个检测到的细胞标记为九种形态之一。这九种形态包括酵母白色和不透明形式,以及菌丝和假菌丝丝状形态。该软件基于全卷积单级(FCOS)目标检测器,这是一种深度学习技术,它使用了我们手动标记每个细胞位置和形态的大量图像。我们开发了一种新颖的累积课程学习策略,该策略根据图像的难度对其进行分层,从简单的酵母形态到复杂的丝状结构。Candescence 在这个困难的学习集中取得了非常好的性能(~85%召回率;81%准确率),其中一些图像包含数百个细胞,预测的细胞形态之间存在大量混合。为了捕捉每个白念珠菌形态的本质以及它们如何混合,我们使用了深度学习中的另一种技术,即生成对抗网络。由此产生的模型使我们能够识别和探索技术变量、发育轨迹和形态开关。重要的是,该模型使我们能够定量捕捉具有遗传修饰菌株或在不同培养基和环境中生长的菌株所观察到的形态可塑性。我们设想 Candescence 是一个社区聚会点,用于对白念珠菌形态进行定量探索。真菌白念珠菌可以根据环境变量在 12 种形态之间“变形”。这种多态性提供的细胞保护能力使白念珠菌成为一种难以治疗的病原体。白念珠菌菌落的显微镜图像可以包含数百个处于不同形态状态的细胞。图像的手动注释可能很困难,尤其是由于密集和丝状的菌落以及显微镜本身的技术伪影。手动注释本质上是主观的,取决于注释者的经验和意见。在这里,我们构建了一个名为 Candescence 的深度学习方法,以自动化、定量和客观的方式解析图像:图像中的每个细胞都被定位并标记其形态。Candescence 有效地用能够捕获图像中细微但明显特征的神经电路取代了基于视觉表型(大小、形状和阴影)的简单规则,这些特征对于人类注释者来说可能过于复杂。