Suppr超能文献

预测医疗保健中电子病历采用的决定因素:一种结构方程模型-人工神经网络方法。

Determinants predicting the electronic medical record adoption in healthcare: A SEM-Artificial Neural Network approach.

机构信息

Department of Health Service Administration, College of Health Sciences, University of Sharjah, Sharjah, UAE.

Doctor of Quality & Operation Management, Quality & Corporate Development Office, Dubai Health Authority, Dubai, UAE.

出版信息

PLoS One. 2022 Aug 16;17(8):e0272735. doi: 10.1371/journal.pone.0272735. eCollection 2022.

Abstract

An Electronic Medical Record (EMR) has the capability of promoting knowledge and awareness regarding healthcare in both healthcare providers and patients to enhance interconnectivity within various government bodies, and quality healthcare services. This study aims at investigating aspects that predict and explain an EMR system adoption in the healthcare system in the UAE through an integrated approach of the Unified Theory of Acceptance and Use of Technology (UTAUT), and Technology Acceptance Model (TAM) using various external factors. The collection of data was through a cross-section design and survey questionnaires as the tool for data collection among 259 participants from 15 healthcare facilities in Dubai. The study further utilised the Artificial Neural Networks (ANN) algorithm and the Partial Least Squares Structural Equation Modeling (PLS-SEM) in the analysis of the data collected. The study's data proved that the intention of using an EMR system was the most influential and predictor of the actual use of the system. It was also found that TAM construct was directly influenced by anxiety, innovativeness, self-efficacy, and trust. The behavioural intention of an individual regarding EMR was also proved to positively influence the use of an EMR system. This study proves to be useful practically by providing healthcare decision-makers with a guide on factors to consider and what to avoid when implementing strategies and policies.

摘要

电子病历 (EMR) 有能力促进医疗保健提供者和患者对医疗保健的了解和认识,增强各政府机构之间的互联互通,并提供高质量的医疗服务。本研究旨在通过整合接受和使用技术的统一理论 (UTAUT) 和技术接受模型 (TAM) 以及各种外部因素,调查阿联酋医疗保健系统中预测和解释 EMR 系统采用的各个方面。通过横断面设计和问卷调查收集数据,共收集了来自迪拜 15 家医疗机构的 259 名参与者的数据。本研究进一步利用人工神经网络 (ANN) 算法和偏最小二乘结构方程建模 (PLS-SEM) 对收集的数据进行分析。研究数据证明,使用 EMR 系统的意图是系统实际使用的最具影响力和预测因素。研究还发现,TAM 结构直接受到焦虑、创新性、自我效能感和信任的影响。个体对 EMR 的行为意图也被证明对 EMR 系统的使用有积极影响。本研究通过为医疗保健决策者提供实施策略和政策时需要考虑的因素以及需要避免的因素的指南,在实践中具有实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9223/9380954/03cd1e681077/pone.0272735.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验