Suppr超能文献

基于 EMR 的医学知识表示和推理:通过马尔可夫随机场和分布式表示学习。

EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning.

机构信息

School of Computer Science and Technology, Harbin, Heilongjiang 150001, China.

School of Management, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.

出版信息

Artif Intell Med. 2018 May;87:49-59. doi: 10.1016/j.artmed.2018.03.005. Epub 2018 Apr 23.

Abstract

OBJECTIVE

Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient.

METHODS

We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance.

RESULTS

As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level.

CONCLUSION

Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions.

摘要

目的

电子病历(EMR)包含可用于临床决策支持(CDS)的医学知识。我们的目标是开发一个通用系统,该系统可以提取和表示 EMR 中包含的知识,以支持三个 CDS 任务——测试推荐、初始诊断和治疗计划推荐——给定患者的病情。

方法

我们从记录中提取了四种医疗实体,并构建了基于 EMR 的医学知识网络(EMKN),其中节点是实体,边反映它们在记录中的共同出现。从 EMKN 中提取了三个二分图(双图),每个图支持一个任务。双图的一部分是给定的条件(例如,症状),另一部分是要推断的条件(例如,疾病)。每个双图都被视为马尔可夫随机场(MRF),以支持推理。我们提出了三种基于图的能量函数和三种基于似然的能量函数。其中两种函数基于知识表示学习,可以提供医疗实体的分布式表示。使用了两个 EMR 数据集和三个度量标准来评估性能。

结果

总体而言,评估结果表明,所提出的系统优于基线方法。医疗实体的分布式表示确实反映了知识层面的相似关系。

结论

结合 EMKN 和 MRF 是一种有效的通用医学知识表示和推理方法。然而,不同的任务需要单独设计的能量函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验