Suppr超能文献

预测中国消费者对可穿戴支付设备的采用意愿:混合 SEM-神经网络方法的应用。

Predicting the intention to adopt wearable payment devices in China: The use of hybrid SEM-Neural network approach.

机构信息

UCSI Graduate Business School, UCSI University, Kuala Lumpur, Malaysia.

UKM - Graduate School of Business, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.

出版信息

PLoS One. 2022 Aug 30;17(8):e0273849. doi: 10.1371/journal.pone.0273849. eCollection 2022.

Abstract

Wearable payment devices (WPD) are gaining acceptance fast and transforming everyday life and commercial operations in China. Limited research works were conducted on customers' adoption intentions to obtain a real image of the evolution of WPD in China. This study aims to investigate the effects of Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI), Facilitating Conditions (FC), Hedonic Motivation (HM), Perceived Trust (PT), and Lifestyle Compatibility (LC) on the intention to adopt WPD among Chinese consumers by expanding unified theory of acceptance and use of technology with two impelling determinants (i.e. PT and LC). Using an online survey, empirical data were collected from 298 respondents in China. In a two-stage data analysis, partial least squares structural equation modelling (PLS-SEM) were employed to analyse the causal effects and associations between independent and dependent variables, whereas artificial neural networks (ANN) were used to evaluate the research model prediction capability. The (PLS-SEM) findings indicated that PE, SI, FC, HM, LC, and PT had substantial positive impacts on adoption intention, whilst EE had no impact on adoption intention among Chinese consumers. The ANN analysis proved the high prediction accuracy of data fitness, with ANN findings highlighting the importance of PT, FC, and PE on the intention to adopt WPD. It was suggested that the study findings assist WPD service providers and the smart wearable device industry practitioners in developing innovative products and implementing efficient marketing strategies to attract the existing and potential WPD users in China.

摘要

可穿戴支付设备(WPD)正在迅速普及,改变着中国人的日常生活和商业运营方式。针对消费者采用意愿的研究工作有限,无法真实反映 WPD 在我国的发展情况。本研究旨在通过扩展技术接受统一理论,用两个推动性决定因素(即感知信任和生活方式兼容性)来研究绩效期望、努力期望、社会影响、便利条件、享乐动机、感知信任和生活方式兼容性对中国消费者采用 WPD 的意愿的影响。通过在线调查,从中国的 298 名受访者那里收集了实证数据。在两阶段数据分析中,采用偏最小二乘结构方程模型(PLS-SEM)分析自变量和因变量之间的因果效应和关联,而人工神经网络(ANN)则用于评估研究模型的预测能力。(PLS-SEM)研究结果表明,绩效期望、社会影响、便利条件、享乐动机、生活方式兼容性和感知信任对采用意愿有实质性的积极影响,而努力期望对中国消费者的采用意愿没有影响。ANN 分析证明了数据拟合的高预测精度,ANN 研究结果强调了感知信任、便利条件和绩效期望对采用 WPD 意愿的重要性。研究结果建议 WPD 服务提供商和智能可穿戴设备行业从业者开发创新产品并实施有效的营销策略,以吸引中国现有和潜在的 WPD 用户。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5332/9426926/1d1c7031f321/pone.0273849.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验