Suppr超能文献

源自金属有机框架的高熵氧化物作为高效尿素氧化和析氧反应的双功能电催化剂

High-Entropy Oxide Derived from Metal-Organic Framework as a Bifunctional Electrocatalyst for Efficient Urea Oxidation and Oxygen Evolution Reactions.

作者信息

Fereja Shemsu Ligani, Zhang Ziwei, Fang Zhongying, Guo Jinhan, Zhang Xiaohui, Liu Kaifan, Li Zongjun, Chen Wei

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.

University of Science and Technology of China, Hefei 230026, China.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 31;14(34):38727-38738. doi: 10.1021/acsami.2c09161. Epub 2022 Aug 16.

Abstract

High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)O using metal-organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m g are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm and low Tafel slope of 49 mV dec. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.

摘要

高熵氧化物(HEOs)通过将不相容的金属阳离子组合到单个晶格中而具有独特的特性。由于其具有丰富的阳离子组成、高熵稳定性、化学和热稳定性以及晶格畸变效应等特殊特性,它们在各种应用中受到了越来越多的关注。然而,关于催化应用的研究报道很少,开发具有大表面积以实现高效催化应用的高熵氧化物仍处于起步阶段。在此,我们以金属有机框架(MOFs)为牺牲模板设计了(FeNiCoCrCu)O纳米结构的高熵氧化物,以实现大表面积、高密度的暴露活性位点和更多的氧空位。制备出了表面积高达206 m²/g的单晶相高熵氧化物,并将其进一步用作尿素氧化反应(UOR)和析氧反应(OER)的双功能电催化剂。受益于增强的氧空位和具有大量暴露活性位点的大表面积,优化后的高熵氧化物在10 mA/cm²电流密度下对尿素氧化反应表现出优异的电催化活性,过电位仅为1.35 V,并在36小时的运行中表现出长期稳定性,其催化性能显著优于先前报道的高熵氧化物。此外,该高熵氧化物在10 mA/cm²电流密度下对析氧反应表现出高效的催化性能,过电位低至270 mV,塔菲尔斜率为49 mV/dec。优异的催化活性归因于起始的MOF前驱体和有利的高熵效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验