Suppr超能文献

精准医学中的种族公平性:儿科哮喘预测算法。

Racial Fairness in Precision Medicine: Pediatric Asthma Prediction Algorithms.

机构信息

School of Medicine, 2629University of South Carolina, Cincinnati, OH, USA.

Department of Pediatrics, 2518Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

出版信息

Am J Health Promot. 2023 Feb;37(2):239-242. doi: 10.1177/08901171221121639. Epub 2022 Aug 16.

Abstract

PURPOSE

Quantify and examine the racial fairness of two widely used childhood asthma predictive precision medicine algorithms: the asthma predictive index (API) and the pediatric asthma risk score (PARS).

DESIGN

Apply the API and PARS and evaluate model performance overall and when stratified by race.

SETTING

Cincinnati, OH, USA.

SUBJECTS

A prospective birth cohort of 590 children with clinically measured asthma diagnosis by age seven.

MEASURES

Model diagnostic criteria included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

ANALYSIS

Significant differences in model performance between Black and white children were considered to be present if the -value associated with a t-test based on 100 bootstrap replications was less than .05.

RESULTS

Compared to predictions for white children, predictions for Black children using the PARS had a higher sensitivity (.88 vs .57), lower specificity (.55 vs .83), higher PPV (.42 vs .33), but a similar NPV (.93 vs .93). Within the API and compared to predictions for white children, predictions for Black children had a higher sensitivity (.63 vs .53), similar specificity (.81 vs .80), higher PPV (.54 vs .28), and lower NPV (.86 vs .92).

CONCLUSIONS

Overall, racial disparities in model diagnostic criteria were greatest for sensitivity and specificity in the PARS, but racial disparities existed in three of the four criteria for both the PARS and the API.

摘要

目的

量化和检验两种广泛应用于儿童哮喘预测精准医学算法的种族公平性:哮喘预测指数(API)和儿科哮喘风险评分(PARS)。

设计

应用 API 和 PARS,并评估整体模型性能以及按种族分层的模型性能。

地点

美国俄亥俄州辛辛那提。

受试者

一个前瞻性的 590 名儿童出生队列,在七岁时通过临床测量哮喘诊断。

测量

模型诊断标准包括敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。

分析

如果基于 100 次 bootstrap 复制的 t 检验的 -值小于.05,则认为黑人儿童和白人儿童之间的模型性能存在显著差异。

结果

与白人儿童的预测相比,PARS 对黑人儿童的预测具有更高的敏感性(.88 比.57),更低的特异性(.55 比.83),更高的 PPV(.42 比.33),但相似的 NPV(.93 比.93)。在 API 中,与白人儿童的预测相比,API 对黑人儿童的预测具有更高的敏感性(.63 比.53),相似的特异性(.81 比.80),更高的 PPV(.54 比.28),和更低的 NPV(.86 比.92)。

结论

总体而言,在 PARS 中,种族差异在模型诊断标准中以敏感性和特异性最为显著,但在 PARS 和 API 中,四个标准中的三个都存在种族差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验