Suppr超能文献

具有双边缘的三维纳米框架作为用于生物传感的纳米探针。

Three-dimensional nanoframes with dual rims as nanoprobes for biosensing.

机构信息

Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, 61007, Republic of Korea.

出版信息

Nat Commun. 2022 Aug 16;13(1):4813. doi: 10.1038/s41467-022-32549-w.

Abstract

Three-dimensional (3D) nanoframe structures are very appealing because their inner voids and ridges interact efficiently with light and analytes, allowing for effective optical-based sensing. However, the realization of complex nanoframe architecture with high yield is challenging because the systematic design of such a complicated nanostructure lacks an appropriate synthesis protocol. Here, we show the synthesis method for complex 3D nanoframes wherein two-dimensional (2D) dual-rim nanostructures are engraved on each facet of octahedral nanoframes. The synthetic scheme proceeds through multiple executable on-demand steps. With Au octahedral nanoparticles as a sacrificial template, sequential processes of edge-selective Pt deposition and inner Au etching lead to Pt octahedral mono-rim nanoframes. Then, adlayers of Au are grown on Pt skeletons via the Frank-van der Merwe mode, forming sharp and well-developed edges. Next, Pt selective deposition on both the inner and outer boundaries leads to tunable geometric patterning on Au. Finally, after the selective etching of Au, Pt octahedral dual-rim nanoframes with highly homogeneous size and shape are achieved. In order to endow plasmonic features, Au is coated around Pt frames while retaining their geometric shape. The resultant plasmonic dual-rim engraved nanoframes possess strong light entrapping capability verified by single-particle surface-enhanced Raman scattering (SERS) and show the potential of nanoprobes for biosensing through SERS-based immunoassay.

摘要

三维(3D)纳米框架结构非常吸引人,因为它们的内部空隙和脊与光和分析物有效地相互作用,允许有效的基于光学的传感。然而,实现具有高产率的复杂纳米框架结构具有挑战性,因为这种复杂纳米结构的系统设计缺乏适当的合成协议。在这里,我们展示了复杂的 3D 纳米框架的合成方法,其中二维(2D)双边缘纳米结构被刻蚀在八面体纳米框架的每个面上。该合成方案通过多个可执行的按需步骤进行。以八面体金纳米颗粒作为牺牲模板,通过边缘选择性 Pt 沉积和内部 Au 刻蚀的顺序过程,得到 Pt 八面体单边缘纳米框架。然后,通过 Frank-van der Merwe 模式在 Pt 骨架上生长 Au 层,形成尖锐且发达的边缘。接下来,Pt 选择性沉积在内边界和外边界上,导致 Au 上的可调几何图案化。最后,在选择性刻蚀 Au 之后,得到具有高度均匀尺寸和形状的 Pt 八面体双边缘纳米框架。为了赋予等离子体特征,在保留其几何形状的同时在 Pt 框架周围涂覆 Au。所得的等离子体双边缘刻蚀纳米框架具有很强的光捕获能力,通过单粒子表面增强拉曼散射(SERS)进行了验证,并通过基于 SERS 的免疫分析显示了纳米探针在生物传感中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/878c/9381508/f28a3b9db982/41467_2022_32549_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验