Suppr超能文献

利用单粒子表面增强拉曼散射进行细胞摄取的精确定量和成像。

Accurate Quantification and Imaging of Cellular Uptake Using Single-Particle Surface-Enhanced Raman Scattering.

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.

School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

ACS Sens. 2024 Jan 26;9(1):73-80. doi: 10.1021/acssensors.3c01648. Epub 2023 Dec 15.

Abstract

Understanding the uptake, distribution, and stability of gold nanoparticles (NPs) in cells is of fundamental importance in nanoparticle sensors and therapeutic development. Single nanoparticle imaging with surface-enhanced Raman spectroscopy (SERS) measurements in cells is complicated by aggregation-dependent SERS signals, particle inhomogeneity, and limited single-particle brightness. In this work, we assess the single-particle SERS signals of various gold nanoparticle shapes and the role of silica encapsulation on SERS signals to develop a quantitative probe for single-particle level Raman imaging in living cells. We observe that silica-encapsulated gap-enhanced Raman tags (GERTs) provide an optimized probe that can be quantifiable per voxel in SERS maps of cells. This approach is validated by single-particle inductively coupled mass spectrometry (spICP-MS) measurements of NPs in cell lysate post-imaging. spICP-MS also provides a means of measuring the tag stability. This analytical approach can be used not only to quantitatively assess nanoparticle uptake on the cellular level (as in previous digital SERS methods) but also to reliably image the subcellular distribution and to assess the stability of NPs in cells.

摘要

了解金纳米粒子(NPs)在细胞中的摄取、分布和稳定性对于纳米粒子传感器和治疗开发至关重要。在细胞中进行表面增强拉曼光谱(SERS)测量的单个纳米粒子成像受到聚集依赖性 SERS 信号、粒子不均匀性和有限的单粒子亮度的影响。在这项工作中,我们评估了各种金纳米粒子形状的单个粒子 SERS 信号以及二氧化硅封装对 SERS 信号的作用,以开发用于活细胞中单粒子水平拉曼成像的定量探针。我们观察到,二氧化硅封装的间隙增强拉曼标签(GERTs)提供了一种优化的探针,可以在细胞的 SERS 图谱的每个体素中进行定量。通过对成像后细胞裂解物中的 NPs 进行单粒子电感耦合质谱(spICP-MS)测量验证了这种方法。spICP-MS 还提供了一种测量标签稳定性的方法。这种分析方法不仅可以用于定量评估细胞水平上的纳米颗粒摄取(如以前的数字 SERS 方法),还可以可靠地成像亚细胞分布,并评估纳米颗粒在细胞中的稳定性。

相似文献

1
Accurate Quantification and Imaging of Cellular Uptake Using Single-Particle Surface-Enhanced Raman Scattering.
ACS Sens. 2024 Jan 26;9(1):73-80. doi: 10.1021/acssensors.3c01648. Epub 2023 Dec 15.
3
GdO-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Jun 15;181:218-225. doi: 10.1016/j.saa.2017.03.033. Epub 2017 Mar 22.
5
Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
J Am Chem Soc. 2008 Oct 29;130(43):14273-9. doi: 10.1021/ja8059039. Epub 2008 Oct 3.
9
Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.
Chem Soc Rev. 2008 May;37(5):912-20. doi: 10.1039/b708839f. Epub 2008 Mar 26.
10
Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.
Biosens Bioelectron. 2014 Jan 15;51:238-43. doi: 10.1016/j.bios.2013.07.063. Epub 2013 Aug 6.

引用本文的文献

1
Unveiling the Invisible: Multiscale Molecular Insights through Raman Imaging.
Chem Biomed Imaging. 2025 Jul 4;3(8):470-472. doi: 10.1021/cbmi.5c00083. eCollection 2025 Aug 25.
2
Linker-Free Synthesis of Core/Satellite Nanoparticles for Single-Particle Surface-Enhanced Raman Spectroscopy and Photocatalysis.
Nano Lett. 2025 May 14;25(19):7785-7792. doi: 10.1021/acs.nanolett.5c00763. Epub 2025 May 6.
3
Facile synthesis of intra-nanogap enhanced Raman tags with different shapes.
Nano Res. 2024 Sep;17(9):8415-8423. doi: 10.1007/s12274-024-6807-y. Epub 2024 Jul 2.

本文引用的文献

1
New Model for Quantifying the Nanoparticle Concentration Using SERS Supported by Multimodal Mass Spectrometry.
Anal Chem. 2023 Feb 7;95(5):2757-2764. doi: 10.1021/acs.analchem.2c03779. Epub 2023 Jan 26.
3
Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides.
Nano Lett. 2022 Sep 14;22(17):7119-7128. doi: 10.1021/acs.nanolett.2c02226. Epub 2022 Sep 1.
4
Three-dimensional nanoframes with dual rims as nanoprobes for biosensing.
Nat Commun. 2022 Aug 16;13(1):4813. doi: 10.1038/s41467-022-32549-w.
5
Single-Nanoparticle-Based Digital SERS Sensing Platform for the Accurate Quantitative Detection of SARS-CoV-2.
ACS Appl Mater Interfaces. 2022 Aug 31;14(34):38459-38470. doi: 10.1021/acsami.2c07497. Epub 2022 Aug 11.
6
Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics.
ACS Sens. 2022 Jun 24;7(6):1747-1756. doi: 10.1021/acssensors.2c00610. Epub 2022 Jun 7.
7
Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis.
Cancers (Basel). 2021 Apr 11;13(8):1825. doi: 10.3390/cancers13081825.
8
It's what's on the inside that counts: Techniques for investigating the uptake and recycling of nanoparticles and proteins in cells.
J Colloid Interface Sci. 2021 Apr;587:64-78. doi: 10.1016/j.jcis.2020.11.076. Epub 2020 Nov 25.
10
Ultra-Microtome for the Preparation of TEM Specimens from Battery Cathodes.
Microsc Microanal. 2020 Oct;26(5):867-877. doi: 10.1017/S1431927620024368.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验