Suppr超能文献

用于韩语医学自然语言处理的预训练 BERT。

A pre-trained BERT for Korean medical natural language processing.

机构信息

School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon, Republic of Korea.

Korea University Research Institute for Medical Bigdata Science, Korea University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2022 Aug 16;12(1):13847. doi: 10.1038/s41598-022-17806-8.

Abstract

With advances in deep learning and natural language processing (NLP), the analysis of medical texts is becoming increasingly important. Nonetheless, despite the importance of processing medical texts, no research on Korean medical-specific language models has been conducted. The Korean medical text is highly difficult to analyze because of the agglutinative characteristics of the language, as well as the complex terminologies in the medical domain. To solve this problem, we collected a Korean medical corpus and used it to train the language models. In this paper, we present a Korean medical language model based on deep learning NLP. The model was trained using the pre-training framework of BERT for the medical context based on a state-of-the-art Korean language model. The pre-trained model showed increased accuracies of 0.147 and 0.148 for the masked language model with next sentence prediction. In the intrinsic evaluation, the next sentence prediction accuracy improved by 0.258, which is a remarkable enhancement. In addition, the extrinsic evaluation of Korean medical semantic textual similarity data showed a 0.046 increase in the Pearson correlation, and the evaluation for the Korean medical named entity recognition showed a 0.053 increase in the F1-score.

摘要

随着深度学习和自然语言处理(NLP)的进步,医学文本的分析变得越来越重要。尽管处理医学文本非常重要,但目前还没有针对韩国医学专用语言模型的研究。由于语言的粘性特征以及医学领域复杂的术语,韩国医学文本的分析非常困难。为了解决这个问题,我们收集了一个韩语医学语料库,并使用它来训练语言模型。在本文中,我们提出了一种基于深度学习 NLP 的韩语医学语言模型。该模型是基于一种最先进的韩语语言模型,使用 BERT 的医学上下文预训练框架进行训练的。预训练模型在带下一句预测的屏蔽语言模型中的准确率提高了 0.147 和 0.148。在内在评估中,下一句预测的准确率提高了 0.258,这是一个显著的提高。此外,对韩语医学语义文本相似性数据的外部评估显示 Pearson 相关性增加了 0.046,对韩语医学命名实体识别的评估显示 F1 分数增加了 0.053。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验