Choi Arum, Kim Chohee, Ryoo Jisu, Jeon Jangyeong, Cho Sangyeon, Lee Dongjoon, Kim Junyeong, Lee Changhee, Bae Woori
Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
VUNO, Seoul, Korea.
Sci Rep. 2025 Jan 28;15(1):3574. doi: 10.1038/s41598-025-87161-x.
This study developed a predictive model using deep learning (DL) and natural language processing (NLP) to identify emergency cases in pediatric emergency departments. It analyzed 87,759 pediatric cases from a South Korean tertiary hospital (2012-2021) using electronic medical records. Various NLP models, including four machine learning (ML) models with Term Frequency-Inverse Document Frequency (TF-IDF) and two DL models based on the KM-BERT framework, were trained to differentiate emergency cases using clinician transcripts. Gradient Boosting, among the ML models, performed best with an AUROC of 0.715, AUPRC of 0.778, and F1-score of 0.677. DL models, especially the fine-tuned KM-BERT model, showed superior performance, achieving an AUROC of 0.839, AUPRC of 0.879, and F1-score of 0.773. Shapley-based explanations provided insights into model predictions, underlining the potential of these technologies in medical decision-making. This study demonstrates the potential of advanced DL techniques for NLP in emergency medical settings, offering a more precise and efficient approach to managing healthcare resources and improving patient outcomes.
本研究利用深度学习(DL)和自然语言处理(NLP)开发了一种预测模型,以识别儿科急诊科的紧急病例。该研究使用电子病历分析了一家韩国三级医院(2012 - 2021年)的87759例儿科病例。训练了各种NLP模型,包括四个使用词频 - 逆文档频率(TF-IDF)的机器学习(ML)模型和两个基于KM-BERT框架的DL模型,以使用临床医生的记录来区分紧急病例。在ML模型中,梯度提升表现最佳,其曲线下面积(AUROC)为0.715,精确率 - 召回率曲线下面积(AUPRC)为0.778,F1分数为0.677。DL模型,特别是经过微调的KM-BERT模型,表现出卓越的性能,AUROC为0.839,AUPRC为0.879,F1分数为0.773。基于夏普利值的解释为模型预测提供了见解,突出了这些技术在医疗决策中的潜力。本研究证明了先进的DL技术在急诊医疗环境中进行NLP的潜力,为管理医疗资源和改善患者预后提供了一种更精确、高效的方法。