Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
Mol Psychiatry. 2022 Dec;27(12):5235-5243. doi: 10.1038/s41380-022-01728-y. Epub 2022 Aug 16.
We previously developed a novel machine-learning-based brain age model that was sensitive to amyloid. We aimed to independently validate it and to demonstrate its utility using independent clinical data. We recruited 650 participants from South Korean memory clinics to undergo magnetic resonance imaging and clinical assessments. We employed a pretrained brain age model that used data from an independent set of largely Caucasian individuals (n = 757) who had no or relatively low levels of amyloid as confirmed by positron emission tomography (PET). We investigated the association between brain age residual and cognitive decline. We found that our pretrained brain age model was able to reliably estimate brain age (mean absolute error = 5.68 years, r(650) = 0.47, age range = 49-89 year) in the sample with 71 participants with subjective cognitive decline (SCD), 375 with mild cognitive impairment (MCI), and 204 with dementia. Greater brain age was associated with greater amyloid and worse cognitive function [Odds Ratio, (95% Confidence Interval {CI}): 1.28 (1.06-1.55), p = 0.030 for amyloid PET positivity; 2.52 (1.76-3.61), p < 0.001 for dementia]. Baseline brain age residual was predictive of future cognitive worsening even after adjusting for apolipoprotein E e4 and amyloid status [Hazard Ratio, (95% CI): 1.94 (1.33-2.81), p = 0.001 for total 336 follow-up sample; 2.31 (1.44-3.71), p = 0.001 for 284 subsample with baseline Clinical Dementia Rating ≤ 0.5; 2.40 (1.43-4.03), p = 0.001 for 240 subsample with baseline SCD or MCI]. In independent data set, these results replicate our previous findings using this model, which was able to delineate significant differences in brain age according to the diagnostic stages of dementia as well as amyloid deposition status. Brain age models may offer benefits in discriminating and tracking cognitive impairment in older adults.
我们之前开发了一种基于机器学习的新型大脑年龄模型,该模型对淀粉样蛋白具有敏感性。我们旨在使用独立的临床数据对其进行独立验证,并证明其效用。我们从韩国记忆诊所招募了 650 名参与者进行磁共振成像和临床评估。我们使用了一个预先训练好的大脑年龄模型,该模型使用了一组主要为高加索人的数据,这些人通过正电子发射断层扫描(PET)证实没有或淀粉样蛋白水平相对较低(n=757)。我们研究了大脑年龄残差与认知能力下降之间的关系。我们发现,我们的预训练大脑年龄模型能够可靠地估计样本中的大脑年龄(平均绝对误差=5.68 岁,r(650)=0.47,年龄范围为 49-89 岁),其中 71 名参与者有主观认知下降(SCD),375 名参与者有轻度认知障碍(MCI),204 名参与者有痴呆症。大脑年龄越大,淀粉样蛋白越多,认知功能越差[优势比(95%置信区间[CI]):1.28(1.06-1.55),p=0.030 用于淀粉样蛋白 PET 阳性;2.52(1.76-3.61),p<0.001 用于痴呆症]。即使在调整载脂蛋白 E e4 和淀粉样蛋白状态后,基线大脑年龄残差也可预测未来认知恶化[风险比(95%CI):1.94(1.33-2.81),p=0.001 用于总 336 随访样本;2.31(1.44-3.71),p=0.001 用于基线临床痴呆评定≤0.5 的 284 亚样本;2.40(1.43-4.03),p=0.001 用于基线 SCD 或 MCI 的 240 亚样本]。在独立数据集,该模型的这些结果复制了我们之前的发现,该模型能够根据痴呆症的诊断阶段以及淀粉样蛋白沉积状态来区分大脑年龄的显著差异。大脑年龄模型可能有助于区分和跟踪老年人的认知障碍。