Cumplido-Mayoral Irene, Sánchez-Benavides Gonzalo, Vilor-Tejedor Natalia, López-Martos David, Brugulat-Serrat Anna, Milà-Alomà Marta, Falcon Carles, Cacciaglia Raffaele, Minguillón Carolina, Fauria Karine, Kollmorgen Gwendlyn, Quijano-Rubio Clara, Molinuevo José Luis, Grau-Rivera Oriol, Suárez-Calvet Marc, Vilaplana Verónica, Gispert Juan Domingo
Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
Universitat Pompeu Fabra, Barcelona, Spain.
Mol Psychiatry. 2025 Apr 12. doi: 10.1038/s41380-025-02961-x.
Magnetic resonance Imaging (MRI)-derived brain-age prediction is a promising biomarker of biological brain aging. Accelerated brain aging has been found in Alzheimer's disease (AD) and other neurodegenerative diseases. However, no previous studies have investigated the relationship between specific pathophysiological pathways in AD and biological brain aging. Here, we studied whether glial reactivity and synaptic dysfunction are associated with biological brain aging in the earliest stages of the Alzheimer's continuum, and if these mechanisms are differently associated with AD-related cortical atrophy. We further evaluated their effects on cognitive decline. We included 380 cognitively unimpaired individuals from the ALFA+ study, for which we computed their brain-age deltas by subtracting chronological age from their brain age predicted by machine learning algorithms. We studied the cross-sectional linear associations between brain-age delta and cerebrospinal fluid (CSF) biomarkers of synaptic dysfunction (neurogranin, GAP43, synaptotagmin-1, SNAP25, and α-synuclein), glial reactivity (sTREM2, YKL-40, GFAP, and S100b) and inflammation (interleukin-6). We also studied the cross-sectional linear associations between AD signature and these CSF biomarkers, We further evaluated the mechanisms linking baseline brain-age delta and longitudinal cognitive decline by performing mediation analyses. To reproduce our findings on an independent cohort, we included 152 cognitively unimpaired and 310 mild cognitive impaired (MCI) individuals from the ADNI study. We found that higher CSF sTREM2 was associated with a younger brain-age after adjusting for AD pathology, both in ALFA+ cognitively unimpaired and in ADNI MCI individuals. Furthermore, we found that CSF sTREM2 fully mediated the link between older brain-age and cognitive decline in ALFA+. In summary, we showed that the protective microglial state reflected by higher CSF sTREM2 has a beneficial impact on biological brain aging that may partly explains the variability in cognitive decline in early AD stages, independently of AD pathology.
磁共振成像(MRI)衍生的脑龄预测是生物性脑老化的一种有前景的生物标志物。在阿尔茨海默病(AD)和其他神经退行性疾病中已发现脑加速老化。然而,以前没有研究调查过AD中特定病理生理途径与生物性脑老化之间的关系。在这里,我们研究了在阿尔茨海默病连续体的最早阶段,神经胶质反应性和突触功能障碍是否与生物性脑老化相关,以及这些机制是否与AD相关的皮质萎缩有不同的关联。我们进一步评估了它们对认知衰退的影响。我们纳入了来自ALFA+研究的380名认知未受损个体,通过从机器学习算法预测的脑龄中减去实际年龄来计算他们的脑龄差值。我们研究了脑龄差值与突触功能障碍的脑脊液(CSF)生物标志物(神经颗粒素、GAP43、突触结合蛋白-1、SNAP25和α-突触核蛋白)、神经胶质反应性(可溶性触发受体表达于髓样细胞2[sTREM2]、YKL-40、胶质纤维酸性蛋白[GFAP]和S100b)以及炎症(白细胞介素-6)之间的横断面线性关联。我们还研究了AD特征与这些CSF生物标志物之间的横断面线性关联,通过进行中介分析进一步评估了将基线脑龄差值与纵向认知衰退联系起来的机制。为了在独立队列中重现我们的发现,我们纳入了来自ADNI研究的152名认知未受损个体和310名轻度认知受损(MCI)个体。我们发现,在调整AD病理后,较高的脑脊液sTREM2与较年轻的脑龄相关,在ALFA+认知未受损个体和ADNI MCI个体中均如此。此外,我们发现脑脊液sTREM2完全介导了ALFA+中脑龄较大与认知衰退之间的联系。总之,我们表明较高的脑脊液sTREM2所反映的保护性小胶质细胞状态对生物性脑老化有有益影响,这可能部分解释了AD早期认知衰退的变异性,且独立于AD病理。