Max Planck Institute for the Physics of Complex Systems, Nöthnizer Straβe 38, 01187 Dresden, Germany.
II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany.
Phys Rev E. 2017 Jun;95(6-1):062409. doi: 10.1103/PhysRevE.95.062409. Epub 2017 Jun 14.
Biochemical oscillations are prevalent in living organisms. Systems with a small number of constituents cannot sustain coherent oscillations for an indefinite time because of fluctuations in the period of oscillation. We show that the number of coherent oscillations that quantifies the precision of the oscillator is universally bounded by the thermodynamic force that drives the system out of equilibrium and by the topology of the underlying biochemical network of states. Our results are valid for arbitrary Markov processes, which are commonly used to model biochemical reactions. We apply our results to a model for a single KaiC protein and to an activator-inhibitor model that consists of several molecules. From a mathematical perspective, based on strong numerical evidence, we conjecture a universal constraint relating the imaginary and real parts of the first nontrivial eigenvalue of a stochastic matrix.
生物体系中广泛存在生化震荡现象。由于震荡周期的波动,构成要素较少的体系无法在无限长时间内维持连贯的震荡。我们证明了,定量描述振荡器精度的连贯震荡次数受到驱使体系远离平衡的热力学力和生化状态基础网络拓扑结构的普遍限制。我们的结果适用于普遍用于生化反应建模的任意马尔可夫过程。我们将研究结果应用于单个 KaiC 蛋白模型和由多个分子组成的激活-抑制模型。从数学角度来看,基于强有力的数值证据,我们推测了一个普遍的约束关系,将随机矩阵的第一个非平凡本征值的虚部和实部联系起来。