Suppr超能文献

行政性骨关节炎严重程度指数的构建。

Construction of an Administrative Osteoarthritis Severity Index.

作者信息

Gebauer Sarah C, Chrusciel Timothy, Salas Joanne, Neme Jamil, Callahan Leigh F, Scherrer Jeffrey

机构信息

Saint Louis University School of Medicine St. Louis, Missouri.

Thurston Arthritis Research Center, University of North Carolina at Chapel Hill.

出版信息

ACR Open Rheumatol. 2022 Nov;4(11):942-947. doi: 10.1002/acr2.11490. Epub 2022 Aug 16.

Abstract

OBJECTIVE

Electronic health record (EHR) databases are a powerful resource to investigate clinical trajectories of osteoarthritis (OA). There are no existing EHR tools to evaluate risk for knee arthroplasty (KA). We developed an OA severity index (OASI) using EHR data and demonstrate the index's association with time to KA.

METHODS

This retrospective cohort study used 2010-2018 nationally distributed Optum EHR data. Eligible patients were 45 to 80 years old with a new diagnosis of knee OA in 2011-2012 and no prior KA. The OASI was a sum of first instance of x-ray imaging, advanced imaging, intra-articular injection, nonsteroidal anti-inflammatory drugs, and opioids. Principal components analysis index (PCI) score was also explored. Extended Cox proportional hazard models assessed time-dependent OASI and time to KA.

RESULTS

Among 16,675 eligible patients, 12.7% underwent KA. Median follow-up time was 72 months. Adjusted OASI models showed each additional event almost doubled the risk for KA (adjusted hazard ratio = 1.80, 95% confidence interval: 1.75-1.86). Similar results were observed for PCI.

CONCLUSION

The sum OASI performs well identifying patients who would undergo KA and offers simplicity versus the PCI. Although replication in other cohorts is recommended, the OASI appears to be a novel and valid means to measure clinical OA severity in research studies using large EHR-based cohorts.

摘要

目的

电子健康记录(EHR)数据库是研究骨关节炎(OA)临床病程的强大资源。目前尚无评估膝关节置换术(KA)风险的电子健康记录工具。我们利用电子健康记录数据开发了骨关节炎严重程度指数(OASI),并证明了该指数与膝关节置换术时间的相关性。

方法

这项回顾性队列研究使用了2010 - 2018年全国范围内分发的Optum电子健康记录数据。符合条件的患者年龄在45至80岁之间,于2011 - 2012年首次诊断为膝关节OA,且此前未接受过膝关节置换术。OASI是X线成像、高级成像、关节内注射、非甾体抗炎药和阿片类药物首次出现情况的总和。还探讨了主成分分析指数(PCI)评分。扩展的Cox比例风险模型评估了随时间变化的OASI和膝关节置换术时间。

结果

在16675名符合条件的患者中,12.7%接受了膝关节置换术。中位随访时间为72个月。调整后的OASI模型显示,每增加一个事件,膝关节置换术的风险几乎增加一倍(调整后的风险比 = 1.80,95%置信区间:1.75 - 1.86)。PCI也观察到类似结果。

结论

OASI总和在识别将接受膝关节置换术的患者方面表现良好,并且与PCI相比更为简单。尽管建议在其他队列中进行重复验证,但OASI似乎是在使用基于大型电子健康记录的队列的研究中测量临床OA严重程度的一种新颖且有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4484/9661818/619078967ce0/ACR2-4-942-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验