Suppr超能文献

溶剂化结构中未知的溶剂和阴离子对为高性能锂离子电池带来新见解。

Hitherto Unknown Solvent and Anion Pairs in Solvation Structures Reveal New Insights into High-Performance Lithium-Ion Batteries.

作者信息

Wahyudi Wandi, Guo Xianrong, Ladelta Viko, Tsetseris Leonidas, Nugraha Mohamad I, Lin Yuanbao, Tung Vincent, Hadjichristidis Nikos, Li Qian, Xu Kang, Ming Jun, Anthopoulos Thomas D

机构信息

KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

出版信息

Adv Sci (Weinh). 2022 Oct;9(28):e2202405. doi: 10.1002/advs.202202405. Epub 2022 Aug 17.

Abstract

Solvent-solvent and solvent-anion pairings in battery electrolytes have been identified for the first time by nuclear magnetic resonance spectroscopy. These hitherto unknown interactions are enabled by the hydrogen bonding induced by the strong Lewis acid Li , and exist between the electron-deficient hydrogen (δ H) present in the solvent molecules and either other solvent molecules or negatively-charged anions. Complementary with the well-established strong but short-ranged Coulombic interactions between cation and solvent molecules, such weaker but longer-ranged hydrogen-bonding casts the formation of an extended liquid structure in electrolytes that is influenced by their components (solvents, additives, salts, and concentration), which in turn dictates the ion transport within bulk electrolytes and across the electrolyte-electrode interfaces. The discovery of this new inter-component force completes the picture of how electrolyte components interact and arrange themselves, sets the foundation to design better electrolytes on the fundamental level, and probes battery performances.

摘要

通过核磁共振光谱首次确定了电池电解质中的溶剂 - 溶剂和溶剂 - 阴离子配对。这些迄今为止未知的相互作用是由强路易斯酸Li诱导的氢键实现的,并且存在于溶剂分子中存在的缺电子氢(δH)与其他溶剂分子或带负电荷的阴离子之间。与阳离子和溶剂分子之间已确立的强但短程的库仑相互作用互补,这种较弱但长程的氢键在电解质中形成了一种扩展的液体结构,该结构受其成分(溶剂、添加剂、盐和浓度)的影响,这反过来又决定了本体电解质内以及跨电解质 - 电极界面的离子传输。这种新的组分间力的发现完善了电解质组分如何相互作用和排列的图景,为在基础层面设计更好的电解质奠定了基础,并探索电池性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afee/9534968/0312f951e701/ADVS-9-2202405-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验