Suppr超能文献

AlphaFold、人工智能 (AI) 和变构。

AlphaFold, Artificial Intelligence (AI), and Allostery.

机构信息

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.

Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

J Phys Chem B. 2022 Sep 1;126(34):6372-6383. doi: 10.1021/acs.jpcb.2c04346. Epub 2022 Aug 17.

Abstract

AlphaFold has burst into our lives. A powerful algorithm that underscores the strength of biological sequence data and artificial intelligence (AI). AlphaFold has appended projects and research directions. The database it has been creating promises an untold number of applications with vast potential impacts that are still difficult to surmise. AI approaches can revolutionize personalized treatments and usher in better-informed clinical trials. They promise to make giant leaps toward reshaping and revamping drug discovery strategies, selecting and prioritizing combinations of drug targets. Here, we briefly overview AI in structural biology, including in molecular dynamics simulations and prediction of microbiota-human protein-protein interactions. We highlight the advancements accomplished by the deep-learning-powered AlphaFold in protein structure prediction and their powerful impact on the life sciences. At the same time, AlphaFold does not resolve the decades-long protein folding challenge, nor does it identify the folding pathways. The models that AlphaFold provides do not capture conformational mechanisms like frustration and allostery, which are rooted in ensembles, and controlled by their dynamic distributions. Allostery and signaling are properties of populations. AlphaFold also does not generate ensembles of intrinsically disordered proteins and regions, instead describing them by their low structural probabilities. Since AlphaFold generates single ranked structures, rather than conformational ensembles, it cannot elucidate the mechanisms of allosteric activating driver hotspot mutations nor of allosteric drug resistance. However, by capturing key features, deep learning techniques can use the single predicted conformation as the basis for generating a diverse ensemble.

摘要

AlphaFold 已经闯入了我们的生活。这是一种强大的算法,强调了生物序列数据和人工智能(AI)的力量。它为项目和研究方向提供了附加价值。它创建的数据库承诺将有无数的应用程序,具有巨大的潜在影响,目前还难以推测。AI 方法可以彻底改变个性化治疗,并为临床试验带来更多的信息。它们有望在重塑和改进药物发现策略方面取得巨大飞跃,选择和优先考虑药物靶点的组合。在这里,我们简要概述了人工智能在结构生物学中的应用,包括分子动力学模拟和微生物组-人类蛋白质-蛋白质相互作用的预测。我们强调了由深度学习驱动的 AlphaFold 在蛋白质结构预测方面取得的进展,以及它们对生命科学的强大影响。同时,AlphaFold 并没有解决数十年来蛋白质折叠的挑战,也没有确定折叠途径。AlphaFold 提供的模型没有捕捉到像失配和变构这样的构象机制,这些机制根植于集合体中,并受其动态分布的控制。变构和信号是群体的特性。AlphaFold 也不会生成固有无序蛋白质和区域的集合体,而是通过它们的低结构概率来描述它们。由于 AlphaFold 生成的是单排名结构,而不是构象集合体,因此它无法阐明变构激活驱动热点突变的机制,也无法阐明变构药物抗性的机制。然而,通过捕捉关键特征,深度学习技术可以将单一预测的构象用作生成多样化集合体的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19de/9442638/854d32c5d4a4/jp2c04346_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验