Suppr超能文献

梅多弗:一种人机可读的元数据标记语言。

MEDFORD: A human- and machine-readable metadata markup language.

机构信息

Department of Computer Science, Tufts University, 177 College Ave, 02155, MA, USA.

Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, 02881, RI, USA.

出版信息

Database (Oxford). 2022 Aug 17;2022. doi: 10.1093/database/baac065.

Abstract

Reproducibility of research is essential for science. However, in the way modern computational biology research is done, it is easy to lose track of small, but extremely critical, details. Key details, such as the specific version of a software used or iteration of a genome can easily be lost in the shuffle or perhaps not noted at all. Much work is being done on the database and storage side of things, ensuring that there exists a space-to-store experiment-specific details, but current mechanisms for recording details are cumbersome for scientists to use. We propose a new metadata description language, named MEtaData Format for Open Reef Data (MEDFORD), in which scientists can record all details relevant to their research. Being human-readable, easily editable and templatable, MEDFORD serves as a collection point for all notes that a researcher could find relevant to their research, be it for internal use or for future replication. MEDFORD has been applied to coral research, documenting research from RNA-seq analyses to photo collections.

摘要

研究的可重复性对科学至关重要。然而,在现代计算生物学研究的方式中,很容易忽略一些微小但极其关键的细节。关键细节,如使用的软件的特定版本或基因组的迭代,很容易在混乱中丢失,或者根本没有被注意到。数据库和存储方面的工作正在进行中,以确保有一个空间来存储实验特定的细节,但目前记录细节的机制对于科学家来说使用起来很麻烦。我们提出了一种新的元数据描述语言,名为开放珊瑚礁数据元数据格式(MEDFORD),科学家可以在其中记录与其研究相关的所有细节。MEDFORD 是人类可读的,易于编辑和可模板化的,它作为一个收集点,收集研究人员认为与其研究相关的所有注释,无论是内部使用还是未来复制。MEDFORD 已应用于珊瑚研究,记录了从 RNA-seq 分析到照片集的研究。

相似文献

8
A Bottom-up Approach to Data Annotation in Neurophysiology.一种神经生理学数据标注的自下而上方法。
Front Neuroinform. 2011 Aug 30;5:16. doi: 10.3389/fninf.2011.00016. eCollection 2011.
10
Recommendations for the FAIRification of genomic track metadata.基因组轨迹元数据的 FAIR 化推荐。
F1000Res. 2021 Apr 1;10. doi: 10.12688/f1000research.28449.1. eCollection 2021.

引用本文的文献

1
Future of coral bleaching research.珊瑚白化研究的未来。
Bioscience. 2025 Jul 3;75(7):585-598. doi: 10.1093/biosci/biaf066. eCollection 2025 Jul.
2
Metadata recommendations for light logging and dosimetry datasets.光记录和剂量测定数据集的元数据建议。
BMC Digit Health. 2024;2(1):73. doi: 10.1186/s44247-024-00113-9. Epub 2024 Aug 28.

本文引用的文献

1
The role of metadata in reproducible computational research.元数据在可重复计算研究中的作用。
Patterns (N Y). 2021 Sep 10;2(9):100322. doi: 10.1016/j.patter.2021.100322.
4
Coral reefs in the Anthropocene.人类世的珊瑚礁。
Nature. 2017 May 31;546(7656):82-90. doi: 10.1038/nature22901.
5
A new, high-resolution global mass coral bleaching database.一个全新的高分辨率全球大规模珊瑚白化数据库。
PLoS One. 2017 Apr 26;12(4):e0175490. doi: 10.1371/journal.pone.0175490. eCollection 2017.
8
A Trait-Based Approach to Advance Coral Reef Science.基于特征的方法推进珊瑚礁科学研究。
Trends Ecol Evol. 2016 Jun;31(6):419-428. doi: 10.1016/j.tree.2016.02.012. Epub 2016 Mar 8.
9
Metaorganisms as the new frontier.后生元:新前沿
Zoology (Jena). 2011 Sep;114(4):185-90. doi: 10.1016/j.zool.2011.04.001. Epub 2011 Jul 6.
10
The Protein Data Bank.蛋白质数据库。
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验