Suppr超能文献

自监督与少样本目标检测综述

A Survey of Self-Supervised and Few-Shot Object Detection.

作者信息

Huang Gabriel, Laradji Issam, Vazquez David, Lacoste-Julien Simon, Rodriguez Pau

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4071-4089. doi: 10.1109/TPAMI.2022.3199617. Epub 2023 Mar 7.

Abstract

Labeling data is often expensive and time-consuming, especially for tasks such as object detection and instance segmentation, which require dense labeling of the image. While few-shot object detection is about training a model on novel (unseen) object classes with little data, it still requires prior training on many labeled examples of base (seen) classes. On the other hand, self-supervised methods aim at learning representations from unlabeled data which transfer well to downstream tasks such as object detection. Combining few-shot and self-supervised object detection is a promising research direction. In this survey, we review and characterize the most recent approaches on few-shot and self-supervised object detection. Then, we give our main takeaways and discuss future research directions. Project page: https://gabrielhuang.github.io/fsod-survey/.

摘要

标注数据通常既昂贵又耗时,尤其是对于目标检测和实例分割等任务而言,这些任务需要对图像进行密集标注。虽然少样本目标检测是指在很少的数据上针对新的(未见过的)目标类别训练模型,但它仍然需要在许多已标注的基础(见过的)类别的示例上进行预先训练。另一方面,自监督方法旨在从未标注数据中学习表征,这些表征能很好地迁移到诸如目标检测等下游任务中。将少样本和自监督目标检测相结合是一个很有前景的研究方向。在本次综述中,我们回顾并描述了少样本和自监督目标检测的最新方法。然后,我们给出主要结论并讨论未来的研究方向。项目页面:https://gabrielhuang.github.io/fsod-survey/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验