Zhang Wenjing, Tan Ke, Wang Han, Hu Di, Pu Haibo
College of Information Engineering, Sichuan Agricultural University, Ya'an 625014, China.
Plants (Basel). 2025 Apr 21;14(8):1259. doi: 10.3390/plants14081259.
Tea ( L.) disease detection in complex field conditions faces significant challenges due to the scarcity of labeled data. While current mainstream visual deep learning algorithms depend on large-scale curated datasets. To address this, we propose a novel few-shot end-to-end detection network called MAF-MixNet that achieves robust detection with minimal annotation data. The network effectively overcomes the bottleneck of insufficient feature extraction under limited samples of existing methods, through the design of a mixed attention branch (MA-Branch) and a multi-path feature fusion module (MAFM). The former extracts contextual features, while the latter combines and enhances the local and global features. The entire model uses a two-stage paradigm to pretrain on public datasets and fine-tune on balanced subset datasets, including novel tea disease classes, anthracnose, and brown blight. Comparative experiments with six models on four evaluation metrics verified the advancement of our model. At 5-shot, MAF-MixNet achieves scores of 62.0%, 60.1%, and 65.9% in precision, nAP50, and F1 score, respectively, significantly outperforming other models. Similar superiority is achieved in the 10-shot scenario, where nAP50 is 73.8%. Our model maintains a certain computational efficiency and achieves the second fastest inference speed at 11.63 FPS, making it viable for real-world deployment. The results confirm MAF-MixNet's potential to enable cost-effective, intelligent disease monitoring in precision agriculture.
由于标记数据稀缺,在复杂田间条件下进行茶树(L.)病害检测面临重大挑战。当前主流的视觉深度学习算法依赖大规模的精选数据集。为解决这一问题,我们提出了一种名为MAF-MixNet的新型少样本端到端检测网络,该网络能够以最少的标注数据实现稳健检测。该网络通过设计混合注意力分支(MA-Branch)和多路径特征融合模块(MAFM),有效克服了现有方法在有限样本下特征提取不足的瓶颈。前者提取上下文特征,后者组合并增强局部和全局特征。整个模型采用两阶段范式,先在公共数据集上进行预训练,然后在包括新的茶树病害类别、炭疽病和赤叶枯病在内的平衡子集数据集上进行微调。在四个评估指标上与六个模型进行的对比实验验证了我们模型的先进性。在5次采样时,MAF-MixNet在精确率、nAP50和F1分数上分别达到了62.0%、60.1%和65.9%的分数,显著优于其他模型。在10次采样的情况下也取得了类似的优势,其中nAP50为73.8%。我们的模型保持了一定的计算效率,以11.63 FPS的速度实现了第二快的推理速度,使其在实际部署中可行。结果证实了MAF-MixNet在精准农业中实现经济高效的智能病害监测的潜力。