Kirillova Alina, Yeazel Taylor R, Gall Ken, Becker Matthew L
Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.
Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
ACS Appl Mater Interfaces. 2022 Aug 31;14(34):38436-38447. doi: 10.1021/acsami.2c06553. Epub 2022 Aug 17.
Poly(propylene fumarate) star polymers photochemically 3D printed with degradable thiol cross-linkers yielded highly tunable biodegradable polymeric materials. Tailoring the alkene:thiol ratio (5:1, 10:1, 20:1 and 30:1) and thus the cross-link density within the PPF star systems yielded a wide variation of both the mechanical and degradation properties of the printed materials. Fundamental trends were established between the polymer network cross-link density, glass transition temperature, and tensile and thermomechanical properties of the materials. The tensile properties of the PPF star-based systems were compared to commercial state-of-the-art non-degradable polymer resins. The thiolene-cross-linked materials are fully degradable and possess properties over a wide range of mechanical properties relevant to regenerative medicine applications.
用可降解硫醇交联剂通过光化学3D打印的聚富马酸丙二醇酯星形聚合物产生了高度可调的可生物降解聚合物材料。调整烯烃与硫醇的比例(5:1、10:1、20:1和30:1),从而调整PPF星形体系中的交联密度,使打印材料的机械性能和降解性能产生了广泛变化。在聚合物网络交联密度、玻璃化转变温度以及材料的拉伸和热机械性能之间建立了基本趋势。将基于PPF星形体系的材料的拉伸性能与商业上最先进的不可降解聚合物树脂进行了比较。硫醇烯交联材料完全可降解,并且在与再生医学应用相关的广泛机械性能范围内具有相应特性。