Suppr超能文献

光固化树脂用于 3D 打印固态固化组织工程植入物。

Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.

机构信息

Mechanical Engineering and Civil Construction, Universitat de Girona, Girona, Spain.

Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Curr Drug Targets. 2019;20(8):823-838. doi: 10.2174/1389450120666190114122815.

Abstract

With the advent of inexpensive and highly accurate 3D printing devices, a tremendous flurry of research activity has been unleashed into new resorbable, polymeric materials that can be printed using three approaches: hydrogels for bioprinting and bioplotting, sintered polymer powders, and solid cured (photocrosslinked) resins. Additionally, there is a race to understand the role of extracellular matrix components and cell signalling molecules and to fashion ways to incorporate these materials into resorbable implants. These chimeric materials along with microfluidic devices to study organs or create labs on chips, are all receiving intense attention despite the limited number of polymer systems that can accommodate the biofabrication processes necessary to render these constructs. Perhaps most telling is the limited number of photo-crosslinkable, resorbable polymers and fabrication additives (e.g., photoinitiators, solvents, dyes, dispersants, emulsifiers, or bioactive molecules such as micro-RNAs, peptides, proteins, exosomes, micelles, or ceramic crystals) available to create resins that have been validated as biocompatible. Advances are needed to manipulate 4D properties of 3D printed scaffolds such as pre-implantation cell culture, mechanical properties, resorption kinetics, drug delivery, scaffold surface functionalization, cell attachment, cell proliferation, cell maturation, or tissue remodelling; all of which are necessary for regenerative medicine applications along with expanding the small set of materials in clinical use. This manuscript presents a review of the foundation of the most common photopolymerizable resins for solidcured scaffolds and medical devices, namely, polyethylene glycol (PEG), poly(D, L-lactide) (PDLLA), poly-ε-caprolactone (PCL), and poly(propylene fumarate) (PPF), along with methodological advances for 3D Printing tissue engineered implants (e.g., via stereolithography [SLA], continuous Digital Light Processing [cDLP], and Liquid Crystal Display [LCD]).

摘要

随着廉价且高精度的 3D 打印设备的出现,大量的研究活动被释放到可吸收的聚合物材料中,这些材料可以通过三种方法进行打印:用于生物打印和生物绘图的水凝胶、烧结聚合物粉末和固化(光交联)树脂。此外,人们还竞相了解细胞外基质成分和细胞信号分子的作用,并设法将这些材料纳入可吸收植入物中。这些嵌合材料以及用于研究器官或在芯片上创建实验室的微流控设备,尽管能够适应生物制造过程的聚合物系统数量有限,但仍受到强烈关注,这些过程对于构建这些结构是必要的。也许最能说明问题的是,可用的光交联可吸收聚合物和制造添加剂(例如光引发剂、溶剂、染料、分散剂、乳化剂或生物活性分子,如 micro-RNAs、肽、蛋白质、外泌体、胶束或陶瓷晶体)数量有限,无法创建已被验证为生物相容的树脂。需要进行技术进步,以操控 3D 打印支架的 4D 特性,如植入前细胞培养、机械性能、吸收动力学、药物输送、支架表面功能化、细胞附着、细胞增殖、细胞成熟或组织重塑;所有这些对于再生医学应用以及扩大临床应用中的少量材料都是必要的。本文综述了用于固态支架和医疗器械的最常见光聚合树脂的基础,即聚乙二醇(PEG)、聚(D,L-丙交酯)(PDLLA)、聚己内酯(PCL)和聚(丙交酯-富马酸)(PPF),以及用于 3D 打印组织工程植入物的方法学进展(例如,通过立体光刻 [SLA]、连续数字光处理 [cDLP] 和液晶显示 [LCD])。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验