Suppr超能文献

通过模拟多核糖体图谱评估核糖体足迹数据集的数据完整性。

Evaluating data integrity in ribosome footprinting datasets through modelled polysome profiles.

机构信息

Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK.

Industrial Biotechnology Centre, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK.

出版信息

Nucleic Acids Res. 2022 Oct 28;50(19):e112. doi: 10.1093/nar/gkac705.

Abstract

The assessment of transcriptome-wide ribosome binding to mRNAs is useful for studying the dynamic regulation of protein synthesis. Two methods frequently applied in eukaryotic cells that operate at different levels of resolution are polysome profiling, which reveals the distribution of ribosome loads across the transcriptome, and ribosome footprinting (also termed ribosome profiling or Ribo-Seq), which when combined with appropriate data on mRNA expression can reveal ribosome densities on individual transcripts. In this study we develop methods for relating the information content of these two methods to one another, by reconstructing theoretical polysome profiles from ribosome footprinting data. Our results validate both approaches as experimental tools. Although we show that both methods can yield highly consistent data, some published ribosome footprinting datasets give rise to reconstructed polysome profiles with non-physiological features. We trace these aberrant features to inconsistencies in RNA and Ribo-Seq data when compared to datasets yielding physiological polysome profiles, thereby demonstrating that modelled polysomes are useful for assessing global dataset properties such as its quality in a simple, visual approach. Aside from using polysome profile reconstructions on published datasets, we propose that this also provides a useful tool for validating new ribosome footprinting datasets in early stages of analyses.

摘要

对转录组范围内核糖体与 mRNA 结合的评估可用于研究蛋白质合成的动态调控。在真核细胞中常用的两种方法在不同的分辨率水平上操作,一种是多核糖体分析,它揭示了核糖体在转录组上的分布;另一种是核糖体足迹分析(也称为核糖体图谱分析或 Ribo-Seq),当与适当的 mRNA 表达数据结合使用时,可以揭示单个转录本上的核糖体密度。在这项研究中,我们通过从核糖体足迹数据中重建理论多核糖体图谱,开发了将这两种方法的信息内容相互关联的方法。我们的结果验证了这两种方法都是实验工具。虽然我们表明这两种方法都可以产生高度一致的数据,但一些已发表的核糖体足迹数据集产生的重建多核糖体图谱具有非生理特征。我们将这些异常特征追溯到与产生生理多核糖体图谱的数据集相比,RNA 和 Ribo-Seq 数据中的不一致性,从而证明了模型化的多核糖体图谱在评估数据集的全局性质(如质量)方面是有用的,这是一种简单、直观的方法。除了在已发表的数据集上使用多核糖体图谱重建之外,我们还建议在分析的早期阶段,这也为验证新的核糖体足迹数据集提供了有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4228/9638929/93318c52d303/gkac705figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验