Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.
Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway.
Nucleic Acids Res. 2022 Sep 9;50(16):9190-9194. doi: 10.1093/nar/gkac701.
While most research suggests mitochondrial DNA (mtDNA) harbors low or no methylation, a few studies claim to report evidence of high-level methylation in the mtDNA. The reasons behind these contradictory results are likely to be methodological but remain largely unexplored. Here, we critically reanalyzed a recent study by Patil et al. (2019) reporting extensive methylation in human mtDNA in a non-CpG context. Our analyses refute the original findings and show that these do not reflect the biology of the tested samples, but rather stem from a combination of methodological and technical pitfalls. The authors employ an oversimplified model that defines as methylated all reference positions with methylation proportions above an arbitrary cutoff of 9%. This substantially exacerbates the overestimation of methylated cytosines due to the selective degradation of unmethylated cytosine-rich regions. Additional limitations are the small sample sizes and lack of sample-specific controls for bisulfite conversion efficiency. In conclusion, using the same dataset employed in the original study by Patil et al., we find no evidence supporting the existence of extensive non-CpG methylation in the human mtDNA.
虽然大多数研究表明线粒体 DNA(mtDNA)的甲基化程度较低或不存在,但也有少数研究声称报告了 mtDNA 中高水平甲基化的证据。这些相互矛盾的结果背后的原因可能是方法学上的,但仍在很大程度上未被探索。在这里,我们批判性地重新分析了 Patil 等人最近的一项研究(2019 年),该研究报告了人类 mtDNA 在非 CpG 背景下广泛存在甲基化。我们的分析推翻了最初的发现,并表明这些发现并不反映测试样本的生物学特性,而是源于方法学和技术缺陷的综合影响。作者采用了一种过于简化的模型,将所有甲基化比例超过任意 9%截断值的参考位置定义为甲基化。由于未甲基化的富含胞嘧啶区域的选择性降解,这极大地加剧了对甲基化胞嘧啶的高估。其他限制因素包括样本量小和缺乏针对亚硫酸氢盐转化效率的样本特异性对照。总之,使用与 Patil 等人在原始研究中使用的相同数据集,我们没有发现任何证据支持人类 mtDNA 中非 CpG 甲基化广泛存在的说法。