Suppr超能文献

血流阻塞破坏癫痫大脑中的纤毛驱动的流体运输。

Flow blockage disrupts cilia-driven fluid transport in the epileptic brain.

机构信息

Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA.

Division of Child Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA.

出版信息

Acta Neuropathol. 2022 Oct;144(4):691-706. doi: 10.1007/s00401-022-02463-y. Epub 2022 Aug 18.

Abstract

A carpet of ependymal motile cilia lines the brain ventricular system, forming a network of flow channels and barriers that pattern cerebrospinal fluid (CSF) flow at the surface. This CSF transport system is evolutionary conserved, but its physiological function remains unknown. Here we investigated its potential role in epilepsy with studies focused on CDKL5 deficiency disorder (CDD), a neurodevelopmental disorder with early-onset epilepsy refractory to seizure medications and the most common cause of infant epilepsy. CDKL5 is a highly conserved X-linked gene suggesting its function in regulating cilia length and motion in the green alga Chlamydomonas might have implication in the etiology of CDD. Examination of the structure and function of airway motile cilia revealed both the CDD patients and the Cdkl5 knockout mice exhibit cilia lengthening and abnormal cilia motion. Similar defects were observed for brain ventricular cilia in the Cdkl5 knockout mice. Mapping ependymal cilia generated flow in the ventral third ventricle (v3V), a brain region with important physiological functions showed altered patterning of flow. Tracing of cilia-mediated inflow into v3V with fluorescent dye revealed the appearance of a flow barrier at the inlet of v3V in Cdkl5 knockout mice. Analysis of mice with a mutation in another epilepsy-associated kinase, Yes1, showed the same disturbance of cilia motion and flow patterning. The flow barrier was also observed in the Foxj1 and FOXJ1Cre:Cdkl5 mice, confirming the contribution of ventricular cilia to the flow disturbances. Importantly, mice exhibiting altered cilia-driven flow also showed increased susceptibility to anesthesia-induced seizure-like activity. The cilia-driven flow disturbance arises from altered cilia beating orientation with the disrupted polarity of the cilia anchoring rootlet meshwork. Together these findings indicate motile cilia disturbances have an essential role in CDD-associated seizures and beyond, suggesting cilia regulating kinases may be a therapeutic target for medication-resistant epilepsy.

摘要

室管膜表面的纤毛呈毡状排列,形成了一个脑脊液(CSF)流动通道网络,为脑室内CSF 流动提供了模式。该 CSF 转运系统在进化上是保守的,但它的生理功能仍然未知。在这里,我们通过研究 CDKL5 缺乏症(CDD)来研究其在癫痫中的潜在作用,CDD 是一种神经发育障碍,具有早发性癫痫,对癫痫药物难治,是婴儿癫痫最常见的原因。CDKL5 是一个高度保守的 X 连锁基因,表明其在调节绿藻衣滴虫纤毛长度和运动方面的功能可能与 CDD 的病因有关。气道纤毛的结构和功能检查表明,CDD 患者和 Cdkl5 基因敲除小鼠都表现出纤毛延长和纤毛运动异常。在 Cdkl5 基因敲除小鼠的脑室纤毛中也观察到了类似的缺陷。对产生于腹侧第三脑室(v3V)的室管膜纤毛进行了流动绘图,v3V 是具有重要生理功能的脑区,结果显示其流动模式发生了改变。用荧光染料追踪纤毛介导的流入 v3V 的情况表明,Cdkl5 基因敲除小鼠 v3V 的入口处出现了一个流动障碍。对另一种与癫痫相关的激酶 Yes1 发生突变的小鼠的分析表明,纤毛运动和流动模式也同样受到干扰。Foxj1 和 FOXJ1Cre:Cdkl5 小鼠中也观察到了流动障碍,证实了脑室纤毛对流动障碍的贡献。重要的是,表现出纤毛驱动的流动改变的小鼠也表现出对麻醉诱导的癫痫样活动的易感性增加。纤毛驱动的流动障碍源于纤毛拍打方向的改变,纤毛锚定的根丝网格的极性被打乱。这些发现表明,纤毛运动障碍在 CDD 相关癫痫发作中起着至关重要的作用,提示调节纤毛的激酶可能是治疗耐药性癫痫的一个靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验