Suppr超能文献

基于极限学习机深度学习模型的新能源汽车ABS电磁阀动能回收研究

Research on Kinetic Energy Recovery of Energy Vehicle ABS Solenoid Valve Based on the ELM Deep Learning Model.

作者信息

Tu Chaoqun, Zhang Lingli

机构信息

Guangzhou Nanyang Polytechnic Vocational College, Guangzhou 510925, Guangdong, China.

出版信息

Comput Intell Neurosci. 2022 Aug 9;2022:6571085. doi: 10.1155/2022/6571085. eCollection 2022.

Abstract

Aiming at the energy vehicle ABS kinetic energy recovery, this study optimizes the ABS system through the IPSO-ELM model, so that the energy vehicle can recover the energy generated by the ABS system to the greatest extent, so as to achieve the purpose of kinetic energy recovery and reduce energy consumption and vehicle cost. Based on the PSO-ELM model, a linear decreasing weighting method is introduced, and then, an IPSO-ELM model is proposed for the optimization analysis of ABS brake kinetic energy recovery. The results show that compared with the simple ELM model and PSO-ELM model, the simulation mean square error and relative error are significantly smaller, the generalization ability and prediction accuracy are higher, and the maximum relative error of the prediction result is 5.43% and the average relative error is 2.72%. The results confirm that the use of IPSO-ELM for ABS kinetic energy recovery optimization is extremely effective, and the study of ABS kinetic energy recovery for energy vehicles based on IPSO-ELM model optimization has strong application prospects and application potential.

摘要

针对新能源汽车防抱死制动系统(ABS)的动能回收问题,本研究通过改进粒子群优化极限学习机(IPSO - ELM)模型对ABS系统进行优化,使新能源汽车能够最大程度地回收ABS系统产生的能量,从而达到动能回收的目的,降低能耗和车辆成本。基于粒子群优化极限学习机(PSO - ELM)模型,引入线性递减加权方法,进而提出用于ABS制动动能回收优化分析的IPSO - ELM模型。结果表明,与简单极限学习机(ELM)模型和PSO - ELM模型相比,其仿真均方误差和相对误差显著更小,泛化能力和预测精度更高,预测结果的最大相对误差为5.43%,平均相对误差为2.72%。结果证实,采用IPSO - ELM对ABS动能回收进行优化极为有效,基于IPSO - ELM模型优化的新能源汽车ABS动能回收研究具有较强的应用前景和应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53f9/9381224/602dba2e2a1e/CIN2022-6571085.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验