Suppr超能文献

OP-ELM:最优剪枝极限学习机

OP-ELM: optimally pruned extreme learning machine.

作者信息

Miche Yoan, Sorjamaa Antti, Bas Patrick, Simula Olli, Jutten Christian, Lendasse Amaury

机构信息

Department of Information and Computer Science, Helsinki University of Technology, Espoo 02015, Finland.

出版信息

IEEE Trans Neural Netw. 2010 Jan;21(1):158-62. doi: 10.1109/TNN.2009.2036259. Epub 2009 Dec 8.

Abstract

In this brief, the optimally pruned extreme learning machine (OP-ELM) methodology is presented. It is based on the original extreme learning machine (ELM) algorithm with additional steps to make it more robust and generic. The whole methodology is presented in detail and then applied to several regression and classification problems. Results for both computational time and accuracy (mean square error) are compared to the original ELM and to three other widely used methodologies: multilayer perceptron (MLP), support vector machine (SVM), and Gaussian process (GP). As the experiments for both regression and classification illustrate, the proposed OP-ELM methodology performs several orders of magnitude faster than the other algorithms used in this brief, except the original ELM. Despite the simplicity and fast performance, the OP-ELM is still able to maintain an accuracy that is comparable to the performance of the SVM. A toolbox for the OP-ELM is publicly available online.

摘要

在本简报中,介绍了最优剪枝极限学习机(OP-ELM)方法。它基于原始极限学习机(ELM)算法,并增加了一些步骤以使其更稳健和通用。详细介绍了整个方法,然后将其应用于几个回归和分类问题。将计算时间和准确率(均方误差)的结果与原始ELM以及其他三种广泛使用的方法进行了比较:多层感知器(MLP)、支持向量机(SVM)和高斯过程(GP)。正如回归和分类实验所示,除了原始ELM外,所提出的OP-ELM方法比本简报中使用的其他算法快几个数量级。尽管简单且性能快速,但OP-ELM仍能够保持与SVM性能相当的准确率。OP-ELM的工具箱可在网上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验